Page 1 of 29

Radiation Medicine Program- Sarcoma Practice Guidelines Table of Contents

	1. Introduction to Sarcoma	3-5
	Key Facts Table: Introduction	00
	 Incidence 	
	Etiology	
	 Screening 	
	 Presentation 	
	Work-up and Diagnosis	
	Tumor Markers	
•	2. Natural History:	6-11
	 Key Facts Table: Pathology / Anatomical Location 	
	STS of extremity, trunk or head and neck	
	Retroperitoneal or intra-abdominal STS	
	 Gastrointestinal stromal tumours (GISTSs) 	
	 Desmoid tumours (Aggressive Fibromatoses) 	
	Rhabdomyosarcoma	
	> Angiosarcoma	
	> Liposarcoma	
	Synovial Sarcoma	
	Routes of spread:	
	• Local	
	Regional	
	Metastatic	
•	3. Treatment Philosophy by scenario:	12-15
	 Key Facts Table 	
	> Local	
	Regional	

> Metastatic

Page Number

5

- Recurrent
- ➢ Follow-up

• 4. Radiotherapy- General Principles of Planning and Target Delineation: 16-20

- o Preamble
- o Key Facts Table: Preoperative Extremity/ Trunk/ Head and neck STS
- Key Facts Table: Postoperative Extremity/ Trunk/ Head and neck STS
- o Key Facts Table: Retroperitoneal or Intra-abdominal STS

•	5. Case Example Figures:	21-26
	o Preoperative Extremity	
	o Postoperative Extremity	
	o Retroperitoneal STS	
•	6. Influential Phase III Clinical Trials	27-28
	7. References	29

1. Introduction

Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors derived from mesenchymal tissue and comprise just less than 1 % of adult cancers in the United States. In 2013, approximately 11, 410 new cases of STS were diagnosed in the USA, of which 6290 will be male and 5120 will be female (Source: Cancer Facts and Figures 2013 from the American Cancer Society <u>http://www.cancer.org/acs/groups/content/@epidemiologysurveilance</u>). The global incidence of STS is difficult to report due to the low prevalence of this disease. Several risk factors have been identified for STS, however, there is no clearly defined etiologic factor. General screening in high-risk patients using imaging or laboratory tests is not supported by clinical evidence, however, a more detailed clinical evaluation at a lower threshold of intervention may be indicated.

Introduction	Description	
Incidence	Incidence*:	
	 Global incidence is not available (source Globocan 2008) 	
	http://globocan.iarc.fr/)	
	 Incidence in the USA: 11, 410 newly diagnosed cases in 2013 	
	 4, 390 estimated deaths 	
Etiology	• Age	
Including risk	o 50 – 55 years	
factors for the	Genetic predisposition:	
disease	 Li-Fraumeni syndrome- associated with p53 mutation 	
	 Von Recklinghausen disease- neurofibromatosis 	
	o Retinoblastoma	
	 Gardner's Syndrome 	
	 Carney's triad 	
	 Werner's syndrome 	
	 Gorlin's syndrome 	
	 Tuberous sclerosis 	
	 Basal cell nevus syndrome 	
	Industrial chemicals:	
	 Manufacturing thorotrast 	

	 Vinyl chloride and arsenic- hepatic angiosarcomas 	
	 Phenoxyherbicides 	
	o Chlorophenols	
	o Dioxins	
	 Phenoxyacetic acids 	
	 Certain herbicides 	
	Past medical history	
	 Lymphedema associated with lymphangiosarcoma 	
	 Past radiation exposure increases risk 	
	 Certain viral infections, including human herpes virus 8 (HHV-8) 	
	and human immunodeficiency virus (HIV)	
Screening	General screening has limited use in STS given its rarity	
	Deep lesions to the superficial fascia require investigation, especially	
	with a history of growth	
	• Any superficial or deep lesion of skin or soft tissue in patients with a	
	history of prior radiation (RT) increases risk	
	Patients with predisposing genetic factors require detailed clinical	
	evaluation	
Presentation	Signs and symptoms vary depending upon the location of the tumour	
	In general, STS presents as a lump that gradually increases in size over	
	a period of time	
	 Early stage STS may not cause signs or symptoms (painless mass) 	
	until growth into surrounding tissues or organs	
	Pain on presentation suggests origin from or invasion of neurovascular	
	structures	
	 In general, superficial lesions and those that develop in the head and 	
	neck region are smaller than those in the retroperitoneum and those	
	originating deep to fascia	
Work-up and	Complete history and physical	
Diagnosis	Pre-Biopsy	
	 Adequate cross sectional imaging (CT +/- MRI) 	
	 Plain radiograph optional 	
	Biopsy and pathology assessment	
	 Carefully planned along future resection axis 	

 Core needle or incisional biopsy. Fine needle aspiration may be
acceptable in institutions with sarcoma expertise
 Should establish grade and histologic subtype
 Chest CT to assess for distant metastases
 Chest CT or chest x-ray for low grade T1 lesions for metastatic
assessment
 CT abdomen/pelvis for abdominal lesions and certain histologies,
mainly myxoid/round cell liposarcoma, epithelioid sarcoma,
angiosarcoma, and leiomyosarcoma
 Consider MRI of total spine for myxoid/round cell liposarcoma
 Consider CNS imaging for alveolar soft part sarcoma and
angiosarcoma
 Consider CSF bone marrow in cases of rhabdomyosarcoma

2. Natural History

Typical signs and symptoms of STS are dependent upon the location, size, depth and pathologic characteristics of the primary tumour. The most frequently observed symptom of extremity and superficial torso STS includes a painless mass. The average interval between the onset of symptoms and diagnosis is shorter for extremity and head and neck STS than for abdominal or retroperitoneal tumors. Some STS may be asymptomatic with growth, and could be large at presentation (i.e. retroperitoneal liposarcoma). The natural history of certain pathological subtypes is inconsistent with the general behavior of STS and will be described separately (i.e. angiosarcoma).

The major route of spread is local extension. Regional lymphatic spread is less common and distant metastases are present in approximately 10 % of cases at initial diagnosis.

Pathology/ Anatomical	Description and Natural History
Location	
Location • STS of extremity, trunk or head and neck	 Usually presents as a painless mass in the extremity and superficial torso Erythema and warmth may be present Large, slow-growing lesions may restrict joint motion Larger tumours may ulcerate skin and/or invade adjacent muscle compartments and bone, leading to fracture For head and neck STS specifically, commonly observed symptoms include nasal obstruction, cranial nerve dysfunction, and proptosis Associated mass effect in more sensitive head and neck locations including pain, odynophagia, pharynx obstruction and airway compromise Lesions of the extremity and superficial trunk are usually controlled at the local site and death results from lung metastases, usually occurring within 2 to 3 years of the initial diagnosis Local control is lower in head and neck lesions than in the extremity, and several histologies exhibit unusual patterns of disease relapse, including rhabdomyosarcoma, liposarcoma, and epithelioid sarcoma.

 Retroperitoneal or intra- 	 Represents 10-15 % of STS
abdominal STS	 Liposarcoma (30 % to 60 %) and leiomyosarcoma (20 % to
	30 %) are the most common histologies
	 Symptoms often develop late and are nonspecific
	 May be quite large at presentation (i.e. liposarcomas)
	 Growth rate a determinant of clinical response
	 Nonspecific abdominal pain or a palpable mass
	 Low grade tumours may grow at a slow rate without
	symptoms and may be quite large at presentation
	 Anorexia and chronic subacute intestinal obstruction with
	subsequent weight loss may appear with large tumours
	 Nausea, vomiting or heartburn may appear
	 Have a greater propensity to recur locally than at a distant
	site many years after initial treatment
	 Rate of local relapse of these often biologically indolent
	tumours is high (40 to 50 %)
Gastrointestinal stromal	These tumours may arise anywhere in the gastrointestinal
tumours (GISTs)	tract but occur more commonly in the stomach or small
	intestine
	 Prognostic factors include site, size, mitotic index and
	mutation status
	 Metastases occur within the peritoneum and liver
	 Represent the first solid tumor to exhibit a consistent
	favorable response to molecular targeted therapy- targeting
	c-kit
 Desmoid tumours 	 A benign locally aggressive tumour defined by over-
(Aggressive	expression of beta-catenin
Fibromatoses)	 Originating in the deep muscular-aponeuroses, scar tissue
	and tendons
	 Women are affected twice as frequently
	 Usually occur during the third and fourth decades of life
	Also occurs in children
	 Categorized as extra-abdominal (70 %), intra-abdominal

Γ	
	(10 %), and those in the abdominal wall (20 %)
	 Intra-abdominal forms are associated with Gardner
	syndrome
	 Capable of local infiltration and destruction, hence the
	name "aggressive fibromatoses"
	 Local recurrence following resection alone is quite common
	 Biopsies are required to rule out malignant disease
	 MRI is useful to determine infiltration into other organs and
	size of lesion
	•
 Rhabdomyosarcoma 	 5th most common cancer in childhood
(non-pleomorphic)	 Classified into embryonal, botryoid, alveolar, and
	pleomorphic subtypes
	 70 % are classified as embryonal and 20 % alveolar, and
	the remainder are variants
	 Alveolar subtype is characterized by translocations
	involving the FOXO1 gene: t(2;13)(q35;q14) generates
	PAX3 - FOXO1 and t(1;13)(p36;q14) generates PAX7 –
	FOXO1
	 Prognostic factors in rhabdomyosarcoma include:
	translocation positive, age less than 1 or greater than 10
	years, lymph node or distant metastases, and site of
	primary
	 Treatment involves multi-agent chemotherapy and local
	therapy with radiation and / or surgery
	 Initial evaluation is similar to STS but should also include
	bone marrow examination
 Angiosarcoma 	 Propensity of superficial angiosarcoma to occur in the
	dermal tissues of the head and neck, typically on the scalp
	(approximately 50 %) or facial skin
	 Commonly present as purple, bruiselike lesions in elderly
	Caucasian men, with rare occurrence in patients of African
	origin
	 Macules frequently become nodular, may coalesce, and

	may ulcerate
	 Frank bleeding is an ongoing issue
	 The apparent multifocal nature of this disease obscures
	accurate definition of margins for surgery and RT
	 Meticulous clinical examination is the only real means of
	identifying areas of multifocal involvement that may exist
	 Radial growth pattern within the dermis of the scalp and
	facial tissues frequently results in satellite lesions
	 Individual patches may coalesce into flat masses of
	substantial size
	 Involvement of the eyelid and periorbital tissues is
	particularly troublesome
	 Also can present on the chest wall of women who have had
	prior radiotherapy for breast cancer
	 Surgical resection in general is often very difficult due to
	wide infiltrative nature of these lesions; radiotherapy is
	offered to patients who have not previously had
	radiotherapy; otherwise, taxol-based chemotherapy is often
	first choice
 Liposarcoma 	 Second most commonly encountered subtype of STS
	 Myxoid liposarcoma (MLS) the most common
	variant
	 MLS has an unusual pattern of recurrence in soft tissues
	 MLS may present multifocally or recur at two or more
	anatomically separate soft tissue sites (more frequently in
	the retroperitoneum and mediastinum)
	 Bone metastasis more common than other STS
	 More favorable survival independent of other prognostic
	factors such as grade, size and depth
	 MLS is radiosensitive and may have favorable local control
	following adjuvant radiotherapy
 Synovial sarcoma 	 Contain the characteristic chromosomal translocation
	t(X;18)(p11;q11) in 100% of biphasic and 96% of
	monophasic synovial sarcomas
1	

		 Typically occurs in the para-articular areas of the tendon
		sheaths and joints
		 Affects young adults
		 50% present in the lower limbs- especially the knee
		 The remainder originate in the upper limbs
		 Calcification may be apparent
		 Little resemblance between synovial membranes and
		synovial sarcoma
		 Rarely arise from synovial tissue
		 Higher risk of lymph node metastases
		 An increased potential for distant metastases with larger
		tumors (> 5 cm), local relapse, and age older than 20 years
Routes of	 Local 	 Longitudinal spread within the muscle groups of origin,
spread		typically an extremity
		 Invasion of contiguous structures and muscle may occur as
		growth progresses
		 May envelope major neurovascular structures
		 For extremity STS, barriers to tumour spread such as bone
		and major facial planes prevent axial spread beyond
		originating compartments
		 Non extremity STS have similar patterns of spread,
		therefore, recognizing and accounting for facial planes in
		surgical and / or radiotherapy target volumes is required
	 Regional 	 In general, lymph node metastasis is uncommon for STS
		except for epithelioid sarcoma, clear cell sarcoma,
		angiosarcoma and rhabdomyosarcoma
		 Traditionally, lymph node involvement has been associated
		with an adverse prognosis
		 Isolated lymph node metastasis may not be as deleterious
		a factor
	Metastatic	 10 % of cases present with overt metastasis
		 Most common site is to lung
		 Spread to bone may follow lung metastasis, but may be the

first site of spread for myxoid liposarcoma (MLS)
 MLS may also develop isolated soft tissue metastases
 For retroperitoneal and intra-abdominal visceral sarcomas,
the liver is more commonly the first site of metastasis

3. Treatment Philosophy by scenario:

Surgery is the main curative treatment modality for STS with the goal of achieving negative margins. Radiation may be used either pre- or post-operatively to reduce the risk of local failure for deep, high grade or large (> 5 cm) tumours. If fascial boundaries are compromised intraoperatively or margins are close (< 2 cm) or involved, re-excision and/or adjuvant radiation should be considered. Chemotherapy is reserved for certain high risk cases or chemosensitive tumours.

Scenario	Treatment Philosophy	
Localized Disease	Surgical excision is the primary treatment of STS	
	 Tissue preservation is achievable in most patients 	
	 Inappropriate surgical violation of fascia should not occur as tumours 	
	can ordinarily be considered to involve either the deep or the superficial	
	compartment but rarely both	
	 If the deep compartment is involved or has been contaminated (as is 	
	the case in an unplanned excision or misguided biopsy), reexcision, RT	
	or a combination of the two may be required	
	 In general, adjuvant RT is recommended: 	
	 for deep tumours 	
	\circ if surgical margins are close (< 2 cm) or positive	
	 tumours are > 5 cm 	
	 Chemotherapy is mandatory in rhabdomyosarcoma, and may be 	
	considered in liposarcoma or synovial sarcoma	
	Chemotherapy may also be considered in high risk cases of locally	
	advanced, unresectable disease for the purpose of cytoreduction	
	facilitating surgical resection	
	Complete R0 surgical excision is also required for GIST at all sites	
	 Imatinib may be given neoadjuvantly to achieve cytoreduction to assist 	
	a complete resection (as above), or in the adjuvant setting in patients	
	with large tumours, and / or with high mitotic index	
Regional	 Certain histologies are associated with a higher propensity for lymph 	
	node metastases including epithelioid sarcoma, clear cell sarcoma,	
	angiosarcoma, and rhabdomyosarcoma	

	 Isolated lymph node metastasis may not be as adverse a prognosis as
	traditionally thought and has been reclassified as stage III rather than
	stage IV disease in the 7 th edition of the AJCC staging classification
	system
	 However, treatment of the LN disease is required in all situations with
	surgery and / or RT if the patient is considered for curative management
	 Aggressive approaches including regional lymph node dissection for
	both synchronous or metachronous nodal disease may result in
	prolonged survival
	 RT is added where there is a high risk of recurrence within the
	surgically dissected tissues due to extracapsular nodal spread or for
	very large and / or multiple nodes.
	 If RT is indicated, it should target the lymph node pathway and include
	the next echelon of apparently uninvolved nodal region
Metastatic	 In selected cases, pulmonary metastasectomy can offer prolonged
	disease remission
	 Stereotactic RT delivered in a single high dose fraction or a small
	number of fractions may provide equivalent local control and overall
	survival (OS) for pulmonary metastases in a less invasive fashion.
	Optimal benefit is seen for patients presenting with one to three
	oligometastases peripherally located with no evidence of disease
	elsewhere
	 Image guided intensity modulated radiotherapy (IG-IMRT) single dose
	fractions of 18-24 Gy have been used for sarcoma spinal metastases
	with high rates of local control, effective palliation, no spinal injury and
	minimal toxicity
	 Soft tissue metastasis may be associated with long disease free
	survival (DFS), especially in selected cases of myxoid liposarcoma
	 Treatment of metastatic bone disease is usually palliative, except in
	rare myxoid liposarcoma cases
	 DT is indicated for management of symptoms of have material.
	 RT is indicated for management of symptoms of bone metastases and
	 RT is indicated for management of symptoms of bone metastases and in cases with large malignant lesions adjacent to critical structures Surgery has an important role in the relief of obstruction or for

	mechanical problems, including fracture
	 Debulking surgery in the chest, abdomen or elsewhere may prevent
	morbidity from intestinal obstruction, ureteral obstruction compressive
	syndromes, and respiratory embarrassment
	 Doxorubicin-based systemic chemotherapy remains the first-line
	treatment for patients with metastatic disease (except
	rhabdomyosarcoma where multi-agent chemotherapy is offered)
	Other drugs including pazopanib, gemcitabine, ifosfamide or trabectedin
	may also be considered
	 Imatinib remains first line therapy for patients with metastatic GIST
Recurrent	 10 to 25 % of STS will recur locally
	 Salvage treatment should be carefully considered as selected patients
	may enjoy long disease-free outcomes following the appropriate
	intervention
	 Consider the dual goals of tumour control and normal tissue protection
	 In patients with STS not previously treated with RT or chemotherapy,
	combined modality therapy should be used if they can be administered
	in a safe manner
	 Treatment of previously irradiated lesions requires greater
	individualization
	 Brachytherapy combined with a wide local excision may be used for
	lesions with a history of prior radiation treatment
	 IMRT delivered preoperatively probably has an advantage in the
	treatment of previously irradiated lesions due to smaller doses and
	volumes involved
	 Local recurrence with concurrent metastases following a short disease-
	free interval are best managed with palliative approaches
Follow up	 First F/U 4 to 6 weeks following primary treatment (surgery or surgery
	and radiation therapy)
	 Every 3 to 4 months in the first 2 years
	 Every 6 months for years 3 to 5
	 Annually thereafter
	 For every examination:

-	Complete history and physical (H & P)
	Chest imaging (plain radiograph or chest CT)
	CT or MRI of the abdomen and pelvis (if retroperitoneal primary or
	GIST)
-	Consider baseline and periodic imaging of primary site based on
	estimated risk of locoregional recurrence
-	Evaluation for rehabilitation (occupational and physical therapy)
	 Continue until maximal function is achieved
• F	or very small gastric GISTs < 2 cm
	Consider CT of the abdomen and pelvis with contrast every 3 to 6
	months for 3 to 5 years, then annually
	Consider endoscopic surveillance every 6 to 12 months for tumours
	with low risk endoscopic ultrasound features
• F	or GIST that is resectable with negative margins but with risk of
s	ignificant morbidity, F/U includes monitoring with imatinib therapy and
ir	ntervening with surgery if possible.

5. Radiotherapy- General Principles of Planning and Target Delineation:

Preamble:

- Intensity-modulated radiation therapy (IMRT) is a standard radiotherapy technique used for treatment of soft tissue sarcoma (STS).
- Anatomic location, size, depth (with respect to the superficial fascia) and pathological features dictate the management of STS.
- Invasion is typically in the longitudinal direction within muscle and confined to the compartment of origin. Suspicious peritumoural changes, henceforth referred to as edema, may harbor microscopic disease. Edema is most often pronounced in the cranio-caudal dimension, and should ordinarily be encompassed in the radiotherapy target volume.
- STS generally respect barriers to tumour spread such as bone, interosseous membrane, and major fascial planes and this concept should be exploited in tissue / function preserving radiotherapy planning, especially in extremity lesions.
- Retroperitoneal tumors commonly grow to a large size and initially displace but eventually invade adjacent organs and tissues.
- In the event of an 'unplanned' surgical resection with positive margins (surgical error), the RT target volume needs to generously include all disturbed muscle compartments in addition to any other tissues considered to be directly involved.
- For preoperative planning target volume definition, CT simulation imaging fused with MR imaging should be performed, idealy with the patient in the treatment position, to help guide delineation of the gross tumour volume (GTV) and clinical target volume (CTV). See figures 1 and 2.
- For postoperative planning target volume definition after assumed complete surgical resection, there is no GTV to delineate. The location of the original GTV following the operation (High risk target volume- HTV), should be recreated in the planning CT dataset using preoperative CT / MRI imaging if available (see figures 3 and 4).
- For preoperative cases, 50 Gy is ordinarily used and target volumes include the GTV and the CTV₅₀, and should be delineated on every slice on the planning CT.
- For postoperative RT delivery, 66 Gy is ordinarily used (60 Gy can be used in margin clear, low grade cases) with an additional peripheral CTV volume for tissues with lesser risk of tumor infestation (see figures 3 and 4).
- For Intra-abdominal and retroperitoneal RT delivery, 50 Gy / 25 fractions to 50.4 Gy / 28 fractions is ordinarily used for preoperative delivery (see figures 5 and 6)

- For unresectable residual gross disease, 70 Gy in 2 Gy / fraction or equivalent dose fractionation is ordinarily used depending on the tolerance of the anatomic region.
- Suggested GTV and CTV_{50} for preoperative IMRT of extremity STS are detailed in Table 1.
- Suggested HTV and CTV₆₆ for postoperative IMRT of extremity STS are detailed in Table 2.
- Suggested GTV and CTV (dose 50 to 50.4 Gy) for preoperative IMRT of retroperitoneal STS are detailed in Table 3.

Table 1

Suggested target volumes for preoperative extremity/trunk/head and neck STS

Target volumes	Definition and description
GTV	Primary: All gross disease on physical examination and imaging. T1 weighted contrast enhanced MRI preferable. (Figure 1-2) Co-registration of the MRI and planning CT is facilitated by immobilizing the patient in the treatment position.
CTV _{50*} (The Subscript 50 denotes the radiation dose delivered)	Includes all areas at risk of subclinical spread defined by the distance from the GTV or edema.
	Includes the GTV + a 4 cm margin in the longitudinal dimensions and a 1.5 cm margin in the radial dimension limited to but including any anatomic barrier to tumor spread, such as bone and fascia (Figure 1-2).
	Suspicious peritumoural edema, best demonstrated on T2 weighted MRI, may contain microscopic tumour cells and should be contoured separately with an adequate margin (usually 1 to 2 cm).
	For cases of 'unplanned excision', margins should include: $_{postop}$ GTV or any residual GTV + all surgically manipulated and disturbed tissues and violated fascia + 4 cm longitudinally and 1.5 cm radially limited to but including any barrier to tumour spread.
PTV _{50⁺}	CTV_{50} + 0.5 to 1.0 cm, determined by individual institutional protocols, procedure.

* Suggested gross tumour dose is 2.0 Gy/fraction to 50 Gy.

Table 2

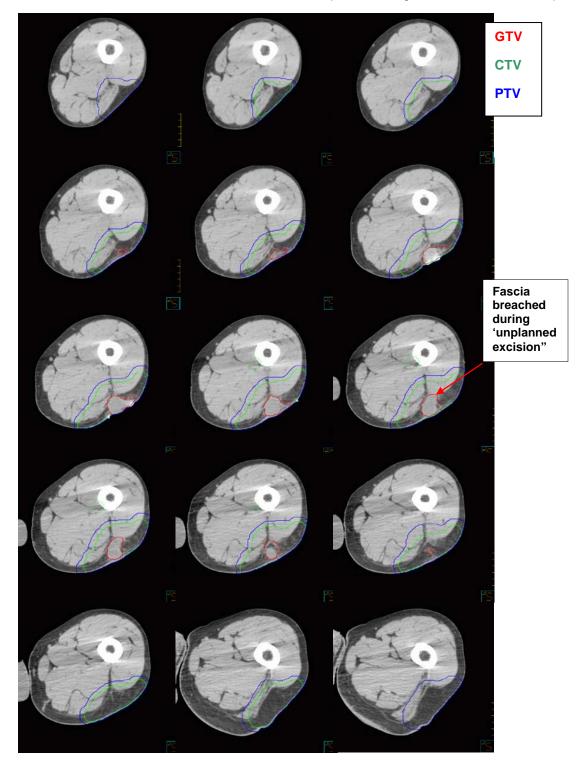
Suggested target volumes for postoperative extremity/trunk/head and neck STS

Target volumes	Definition and description
HTV	HTV should identify the original site of the tumour. Important to review and import pre-surgical imaging when contouring on the CT simulation scan for RT planning to ensure adequate coverage of the original tumour extent.
CTV _{66*} (The Subscript denotes the radiation dose delivered)	CTV ₆₆ should encompass the entire HTV+ immediate area of surgical change with a 1 to 2 cm margin in the longitudinal plane and a 1.5 cm margin in the transverse plane. This may, but not always, include all surgically disturbed tissues, scars and drain sites.
PTV _{66⁺}	CTV ₆₆ + 0.5 to 1.0 cm, determined by individual institutional protocols and procedure. (Figure 1-3 and 1-4).
CTV _{56*}	Includes all areas at risk of subclinical spread defined by the distance from the HTV and additional disturbed tissues.
	Includes the HTV + a 4 cm margin in the longitudinal dimensions and a 1.5 cm margin in the radial dimension limited to but including any anatomic barrier to disease spread (Figure 1-4); additional disturbed surgical tissues and any scars or drain sites are ordinarily included with a 1 to 2 cm margin if they are not included in the CTV ₆₆ .
	Suspicious peritumoural edema should be contoured separately and included with an adequate margin. Like surgically disrupted tissue, it is best identified from a recent post-operative MRI scan.
	Discussion with the surgeon and review of surgical and pathology reports will facilitate the decision about whether or not a seroma, lymphocele, or hematoma should be included.
PTV _{56⁺}	CTV_{56} + 0.5 to 1.0 cm, determined by individual institutional protocols and procedure. (Figure 1-4).

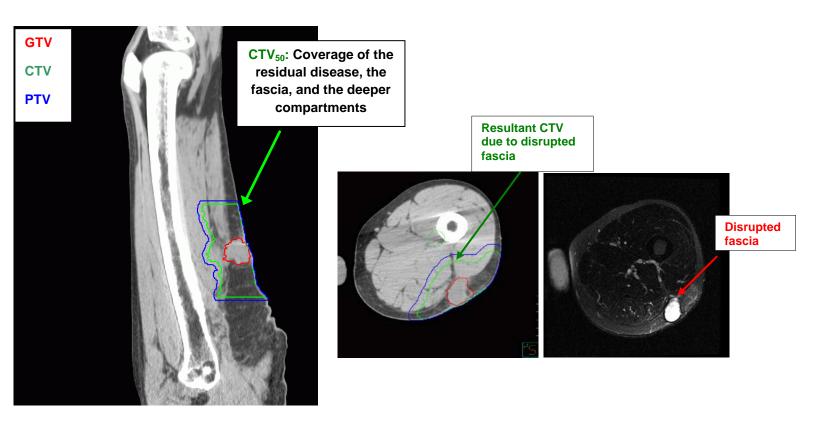
* High-risk subclinical dose: 2.0 Gy/fraction to 66 Gy; For lower risk subclinical regions 1.69 Gy/fraction to 56 Gy delivered to the CTV₅₆.
 ** Table describes single phase simultaneous boost technique. An alternate is the more traditional phased shrinking field

** Table describes single phase simultaneous boost technique. An alternate is the more traditional phased shrinking field technique that delivers 50 Gy in 25 fractions to all areas of subclinical disease followed by a boost to deliver the final 16 Gy in 8 fractions.

Table 3


Suggested target volumes for retroperitoneal STS

Target volumes	Definition and description
GTV*	Primary: All gross disease on physical examination and imaging.
CTV	Includes all areas at risk of subclinical spread defined by the distance from the GTV.
	Includes the GTV + a 2 cm margin in the longitudinal dimensions and a 0.5 – 2.0 cm margin in the radial dimension limited to but including any anatomic barrier to tumor spread and critical anatomy. For example, if the tumour is approximating an intact liver, 0.5 cm of the liver is included.
	2 cm margins are usually used posteriorly to include fatty tissues and vessels.
	Ipsilateral kidney may be sacrificed provided the contralateral kidney has acceptable function. In such a case, dose to the uninvolved opposite kidney should be kept as low as reasonably achieveable.
	Other organs at risk include the small bowel, liver, spinal cord and lungs.
PTV	CTV + 0.5 cm, determined by individual institutional protocols and procedure.


*Suggested gross tumour dose range of 50 Gy / 25 fractions to 50.4 Gy / 28 fractions.

5. Case Example Figures

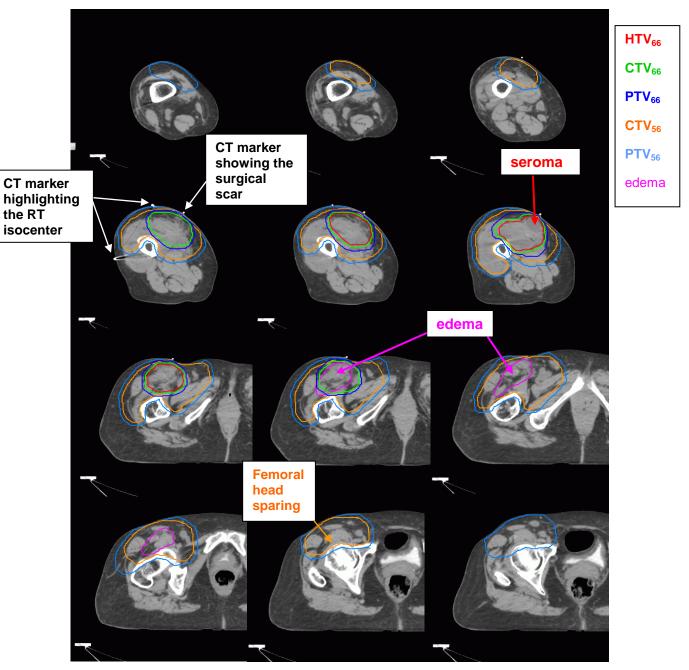

Figure 1. A patient with a T2bN0M0 Grade 3 dedifferentiated liposarcoma in the posterolateral thigh. This patient presented having had a previous unplanned excision of a superficial lesion where the fascia of the vastus lateralis was breached, but did not involve the deeper compartment originally. CT simulation used 2.0 mm slice thickness. Notice the area of violated fascia due to previous surgical error. Shown are representative slices.

Figure 2. Example of GTV, CTV and PTV displayed in the sagittal view as well as an axial view of the disrupted fascia as a result of an unplanned excision with the corresponding planning CT target volumes.

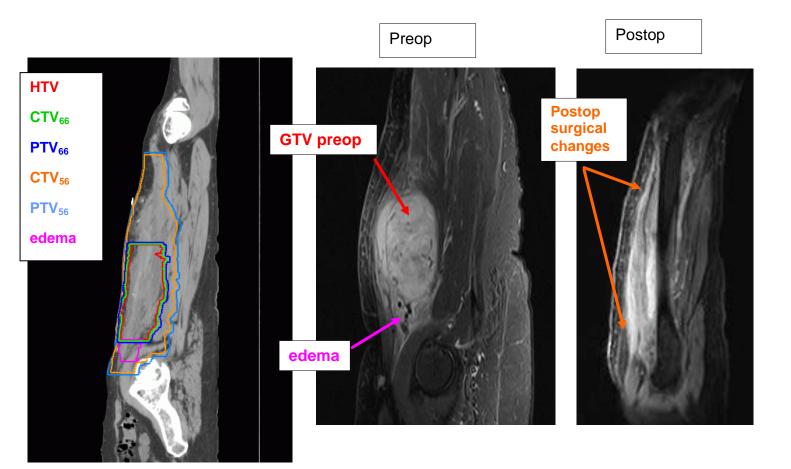
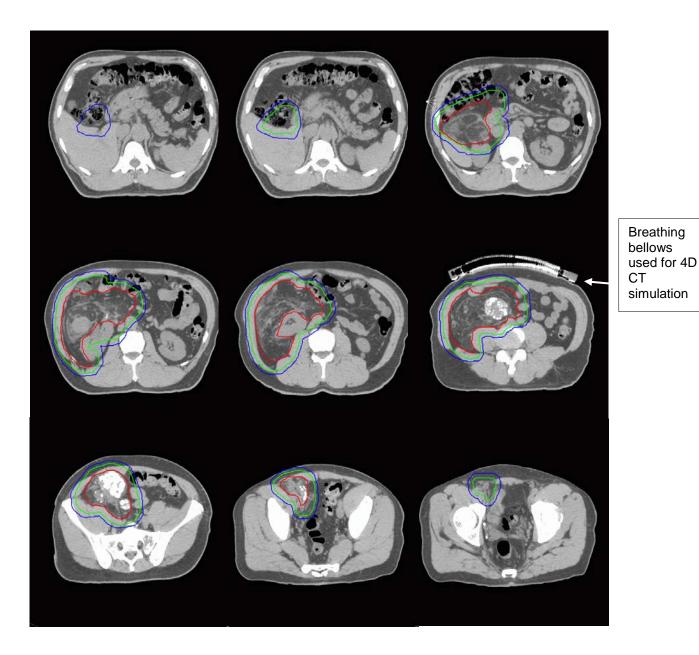


Figure 3*. A patient with a T2bN0M0 Grade 3 pleomorphic rhabdomyosarcoma in the left thigh. This patient received postoperative RT for negative but close margins. CT simulation used 2.0 mm slice thickness. Edema was contoured in the superior aspect of the HTV and included in the CTV₅₆. Shown are representative slices.



*CTV₅₆ is limited by the femoral head and bone throughout the target. In some cases where the subcutaneous tissues hav been contaminated, bolus may be applied to the surgical scar for a component of the treatment (e.g. 50 Gy)

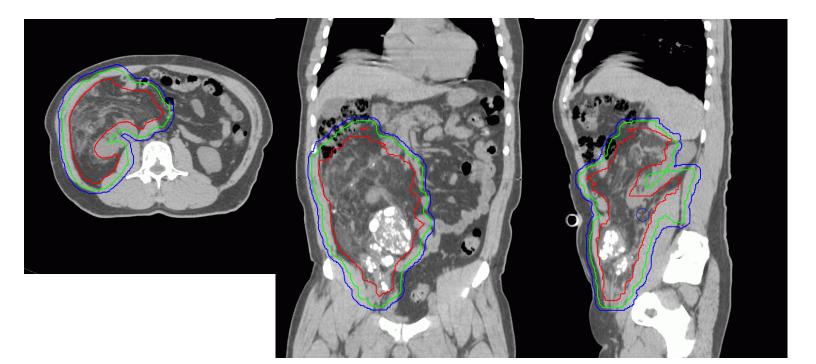

Figure 4. Sagittal CT simulation view of the radiotherapy target volumes for this postoperative STS case and corresponding preoperative and postoperative MRI. Note the CTV_{56} is defined by edema and the postoperative surgical changes. Where the target may appear coincidental in this scaled anatomic illustration, the usual margins were applied (e.g. 0.5 to 1 cm PTV expansion). In addition, the preoperative imaging was imported and co-registered with the postoperative RT planning CT dataset in order to appreciate the original tumour extent for delineation of the HTV.

Figure 5. An example of a right sided T2bN0M0 grade 3 undifferentiated pleomorphic retroperitoneal sarcoma juxtaposed to the duodenum, the right kidney and the iliac vessels. CT simulation used a 2.0 mm slice thickness. Representative slices are shown. Note the small amount of liver included in the CTV and PTV in the first three axial slices. Multifocal areas of calcifications within the tumour aided in daily image guidance for targeted IMRT. 4D CT simulation is encouraged.

Figure 6. An axial, coronal and sagittal display of the right sided retroperitoneal sarcoma. Note the bowel displacement by the tumour, one of the major advantages of preoperative radi

Trial Name

	Result
Amputation or	 Randomized (1:2) 43 cases of high-grade extremity sarcoma to
limb sparing plus	amputation (at/above joint proximal to tumour) or to limb-preservation
RT	surgery plus RT
	• Adjuvant-RT: 50 Gy to entire at risk area plus 10-20 Gy to tumour bed
NCI, Bethesda (1)	 Local recurrence 4/27 (RT arm) vs 0/16 (p=0.06)
	 Surgery plus RT led to no difference in survival: 5-year OS 83% vs.
	88% (p=0.99)
Timing of RT	 Randomized 190 cases of extremity sarcoma to pre- or post-operative
	RT. Both arms received 50 Gy to 5 cm expansion. All post- operative
NCIC CTG,	patients had phase 2 (16 $-$ 20 Gy to 2cm tumour bed expansion)
Canada (2)	whereas only positive margins of pre-operative group received phase 2
	treatment
	 Primary end point of wound complication: 35% pre-op vs 17% post-op
	at median follow up of 3.3 years (P=0.01). Lower limb more at greater
	risk.
	 2 year fibrosis rates 31.5% (pre-op) vs 48.2% (P=0.07)
	 No difference in 5 year local recurrence rate or OS
Brachytherapy vs	Intraoperative randomization after complete excision of superficial trunk
observation	or extremity tumours to brachytherapy or observation.
	 164 patients (40% of those eligible) had catheters inserted with
MSKCC, New York	treatment, starting at day 6 postoperatively
(3)	 Iridium 192 wires delivering 42 -45 Gy over 4-6 days
	 5-year LCR: 82 (RT arm) vs 69% (p=0.04)
	 5-year DSS: 84 vs 81% (p=0.65)
	 No significant difference in low-grade tumours.
	 Increased wound complication (p=0.03) when brachytherapy
	commenced within 5 days of surgery. No significant difference when RT
	start changed to >5 days post surgery (p=0.67)
Post op Radiation	• 1980s, single-institution RCT comparing postoperative EBRT with IORT

6. Influential Phase III Clinical Trials

Result

retroperitoneal	and EBRT
STS	 15 patients received 20 Gy IORT with electron fields, followed by 35-40
	Gy postoperative EBRT
NCI, Bethesda (4)	 20 received 35-40Gy extended-field EBRT with 15 Gy EBRT boost
	 40% vs 80% LRR (p<0.001) in favour of adding IORT
	 At expense of significantly higher radiation enteritis and neuropathy in
	IORT arm
	 No significant difference in median survival (45 vs 52 months)
	 Small numbers, high toxicity and higher than expected LRR in control
	arm have limited the impact of this trial

8. References:

1. Rosenberg SA, Tepper J, Glatstein E, et al. Prospective Randomized Evaluations of (1) Limb-sparing Surgery Plus Radiation Therapy Compared with Amputation and (2) the Role of Adjuvant Chemotherapy. Ann Surg. 1982; 196: 305-314

2. O'Sullivan B, Davis AM, Turcotte R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet. 2002; 359: 2235-41. Davis AM, O'Sullivan B, Turcotte R, et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol, 2005; 75: 48-53

3. Pisters PW, Harrison LB, Leung DH, et al. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol. 1996; 14: 859-68

4. Sindelar WF, Kinsella TJ, Chen PW, et al. Intraoperative radiotherapy in retroperitoneal sarcomas. Final results of a prospective, randomized, clinical trial. Arch Surg. 1993 Apr;128 :402-10