

Radiation Treatment Quality Based Procedures (RT-QBP)

Expert Panel – Hematology

NOVEMBER 6, 2019

Objectives for Today

Expert Panel Hematology meeting #1:

To provide an overview of the Radiation Therapy QBP (RT-QBP) process

To review the dose/fractionation data for Hematology

To come to a consensus about RT protocols for hematology, including dose/fractionation ranges for each protocol

Discuss quality metrics for RT QBP, and assign "leads" for the quality metrics work

Discuss any question or concerns about the RT QBP and provide feedback

Identify and record RT-QBP risk registry items

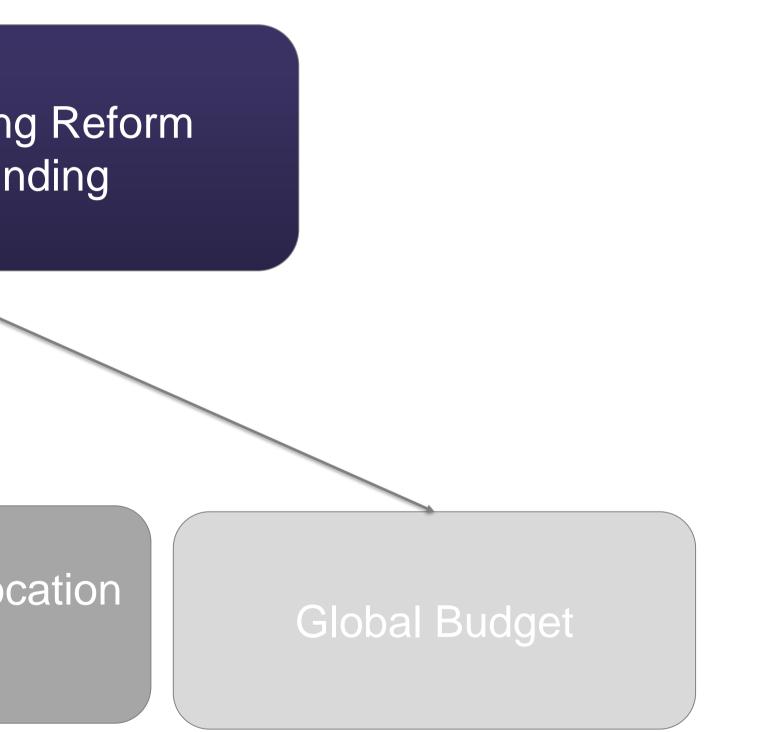
CCO

Overview of HSFR

3

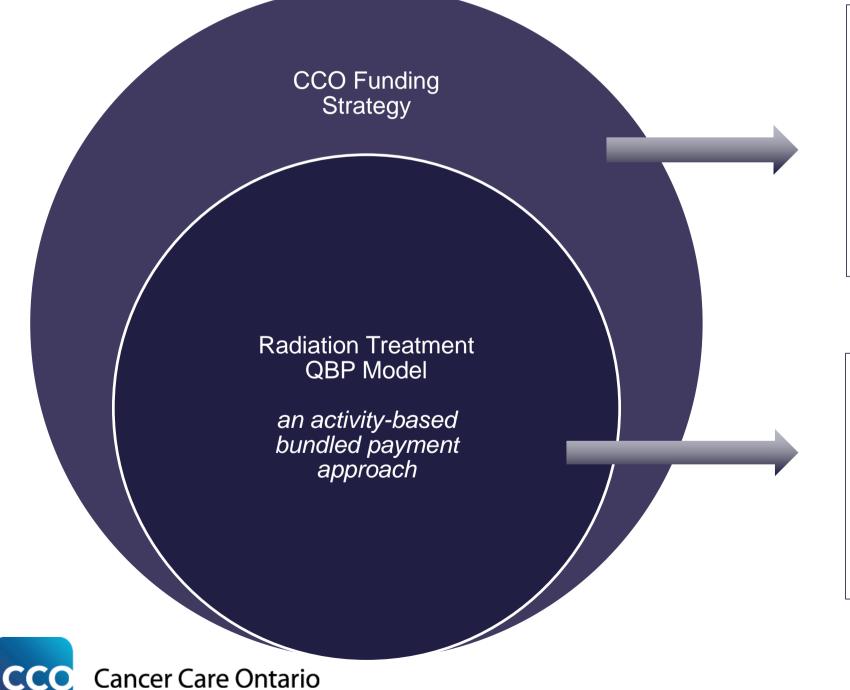
Health System Funding Reform (HSFR)

Health System Funding Reform Patient Based Funding


Quality Based Procedures/Programs

Health Based Allocation Model

Cancer Care Ontario


Radiation Treatment QBP Overview

5

Radiation Treatment QBP Overview

Vision: Implement a new funding model that will drive consistent, equitable, and high-quality care for patients being treated with radiation

- Systemic Treatment QBPs have been completed
- Completing the third modality, RT-QBP will:
 - Allow CCO to better coordinate the up-stream care elements, which could lead to a diagnostic-type QBP for cancer patients in the future
 - patients requiring concurrent chemo/radiation therapy)
 - cancer patients
- Improve patient outcomes and experiences
- Align with best practices based on clinical evidence and expert consensus
- Improve appropriateness of care and reduce variation in care
- utilization

- Cancer treatment is typically one of, or a combination of, three modalities Cancer Surgery,
 - Control areas of overlap and potential duplication of funding during treatment phases (i.e.
 - Lead to more integrated approaches to post hospital care, such as a community care QBP for

• Facilitate efficient use of resources, increase both the transparency and accountability of resource

• Increase accessibility to services including new technologies to ensure that Ontarians receive high quality and safe radiation treatment services, regardless of where they reside in the province

Scope and Outline for RT-QBP

Ontario Health System Funding Reform:

Shift to patient-based funding

Scope: Ambulatory Care Radiation Treatment

Activities related to direct patient care at all radiation treatment facilities

The following are **in scope** for now:

- All in-scope adult and pediatric volumes
- In-patient & Out-patient activities
- Benign (where appropriate)
- Costs associated with ongoing maintenance of radiation equipment and associated software/hardware
- Systemic Treatment by ROs (hormones)
- Psychosocial support
- Clinical Trials (fund as per standard of care)

Cancer Care Ontario

Data Source: ALR (Linkage to others as required-OHIP, NACRS, DAD, etc.)

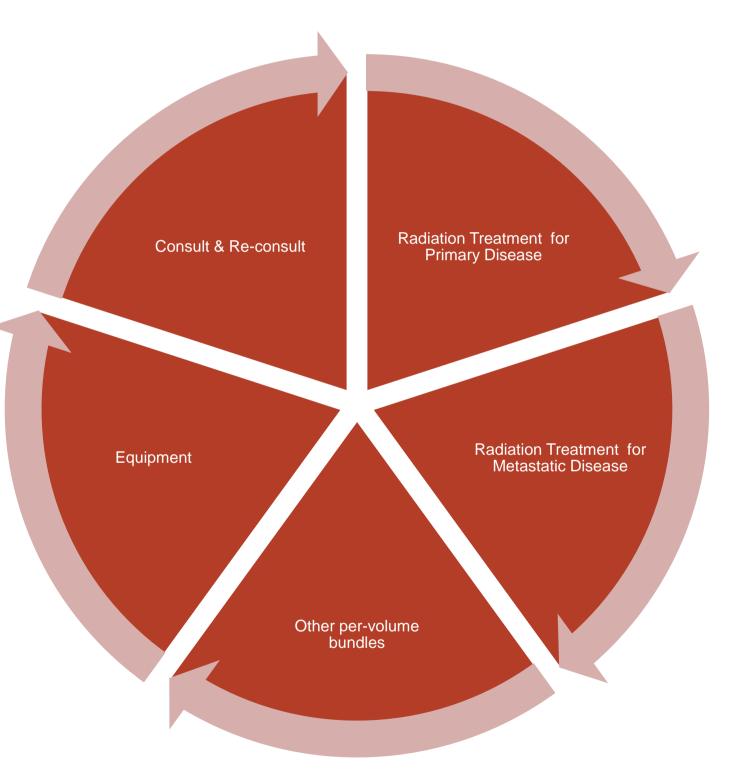
Goal: Implement a new episodebased funding model which: -Ensures funding follows the patient -Reduces inequities in funding - Ties funding to evidence-informed practice

The following are **out of scope** for now:

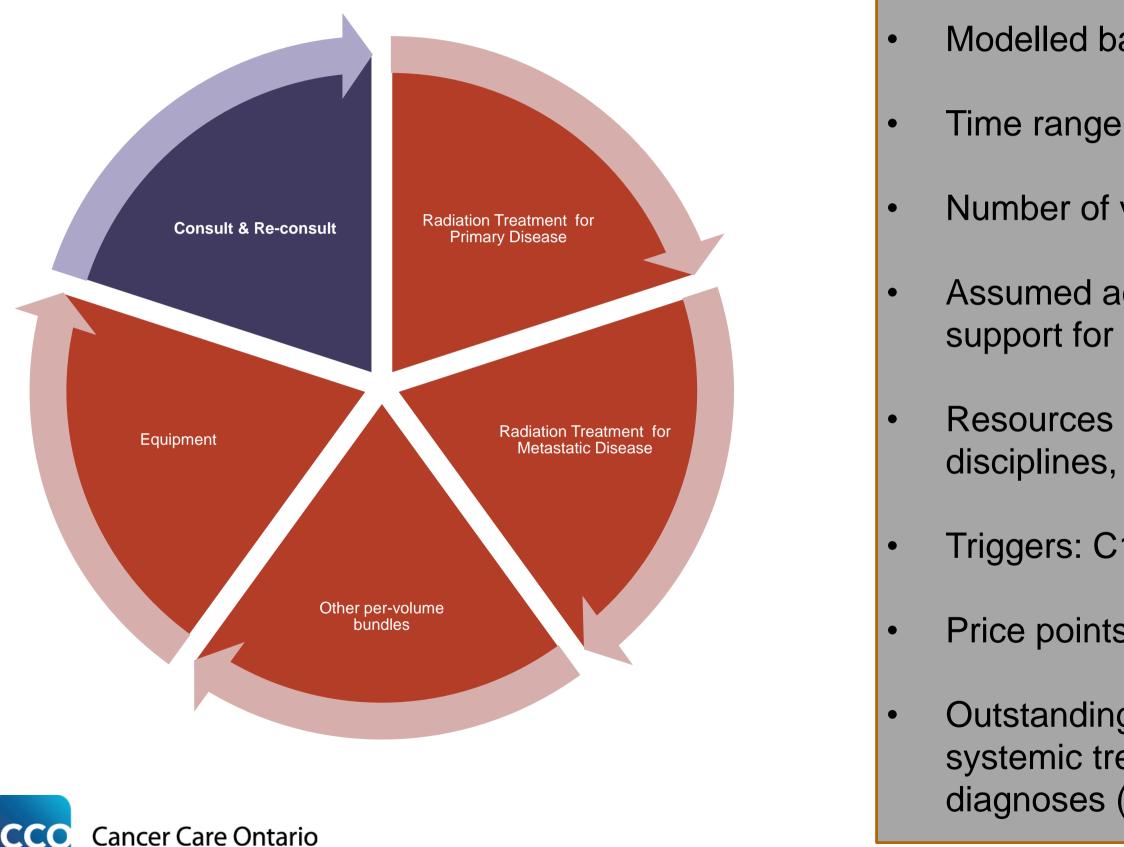
- Physician Compensation
- Capital Replacement Grant
- Home Care
- Laboratory & diagnostic imaging
- Ontario non-OHIP activity: Any procedure that is completed for an Ontario resident who does not have a valid Ontario Health Insurance Plan (OHIP) or where funding is provided from a source other than OHIP
- Out-of-province/country activity: Any procedure that is completed for a non-Ontario resident.

Radiation Treatment Overview

Previous Lifetime Model


LIFETIME PER CASE FUNDING CCO funding C1R PCOP per visit Funding Hospital base

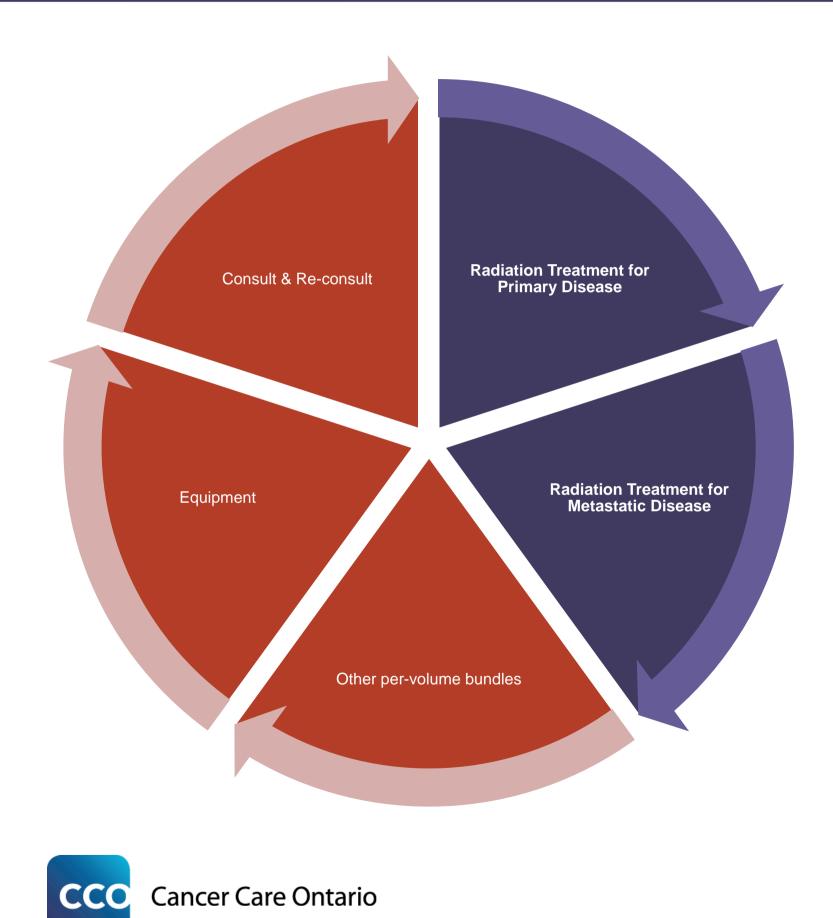
CCC Cancer Care


247 team members are involved in RT-QBP development- thank you to your teams!

Carve-out

Radiation Treatment QBP

Consultations for Radiation Treatment



Modelled based on ST-QBP

- Time range: from initial consultation to decision to treat
- Number of visits: assumed 2 (data validation under way)
- Assumed activities (under validation): Patient education, PSO, support for patient decision-making
- Resources involved: Nurses, managers and clerical, PSO disciplines, radiation therapists
- Triggers: C1R (consult), change in RT protocols (re-consult)
- Price points: expectation is 1 price point, similar to ST-QBP
- Outstanding considerations: Overlap with patients receiving systemic treatment, confirmation of list of non-malignant diagnoses (likely Z codes that includes Genetic Counselling)

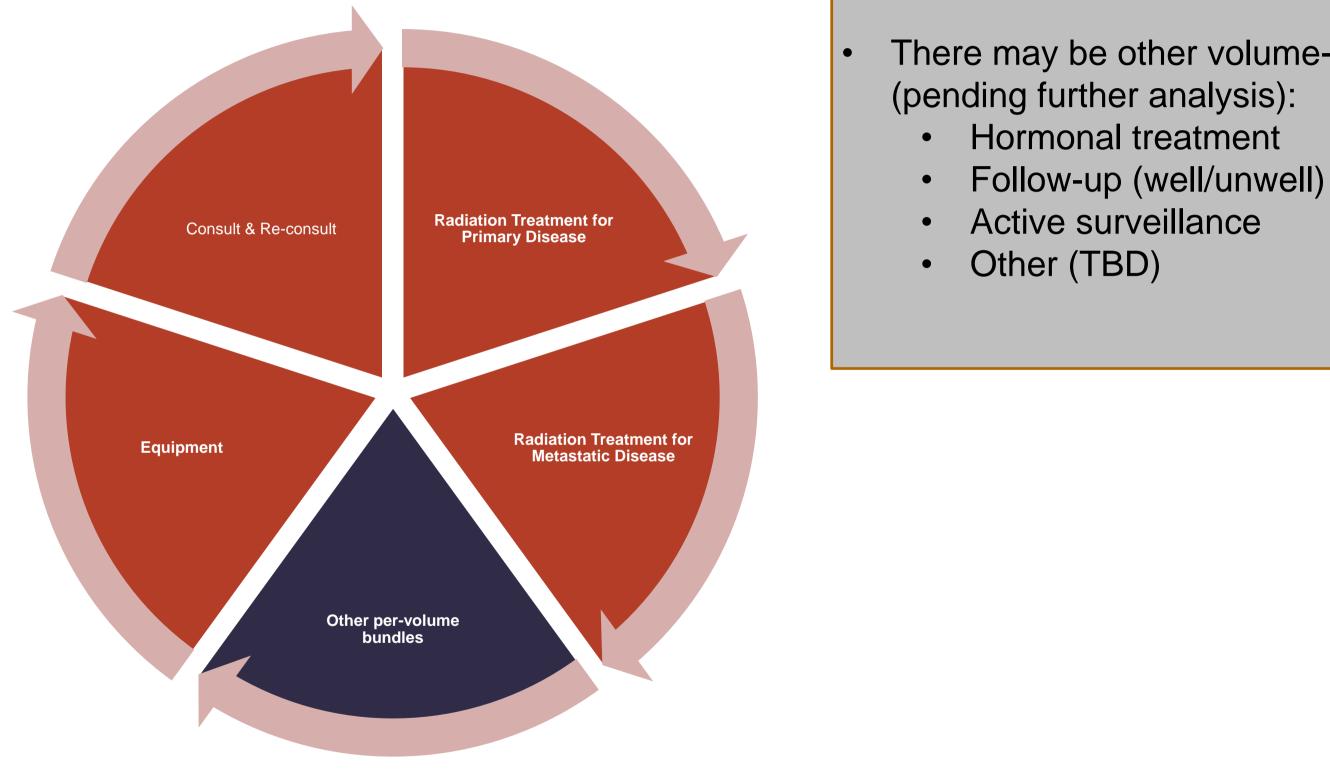
Radiation Treatments for Primary and Metastatic Diseases

- (to be completed by December)

 Clinical experts in process of finalizing list of evidence-informed treatment protocols and the associated Quality Metrics (best practice)

Costing discipline-specific teams are micro-costing protocols for all treatment phases (treatment request processing, simulation, treatment planning, pre-treatment, delivery, post-treatment support)

• Costing includes: MRT, Physicists, Nursing, Clerical, Manager


Protocols for clinical trials will include funding for standard of care

Data triggers: treatment visit, RT protocol

• Price: multiple price points- protocols will be banded

Outstanding issues: accommodations during treatment (lodging)

Other non-volume bundles

There may be other volume-based bundles. This could include (pending further analysis): Hormonal treatment Follow-up (well/unwell) Active surveillance Other (TBD)

Funding for Major Equipment Maintenance and Minor Equipment

- of October

Cancer Care Ontario

Includes major equipment support and maintenance, minor equipment and HR required to support the equipment (e.g. engineers, medical physicists, physics associates)

Funding will not be per-volume: approach is TBD

Costing is based on data provided through facilities - submitted already for major equipment support and maintenance costs. Feedback on staffing and clinical equipment support due at the end

Summary of Facility Requests for RT-QBP Development

Carve-out Validation

- Ministry has indicated support, however, process is still moving through various approval groups at the Ministry.
- In the next few weeks, CCO will provide a template which shows all revenue associated with radiation. \bullet
- Facilities will be asked to review and provide confirmation via email or request for call to review. \bullet
- Target completion date: Mid-November \bullet

Staffing and Clinical Activity Template

Supports development of equipment bundle. Template due end of October.

Protocol Coding-

- Funding will be triggered for treatment bundle based on RT protocol. \bullet
- Currently an optional field in ALR. List of protocol codes available in databook for GU, other protocols will be \bullet posted as developed.
- Facilities should start processes now to start submitting. At this time no facility is submitting. \bullet

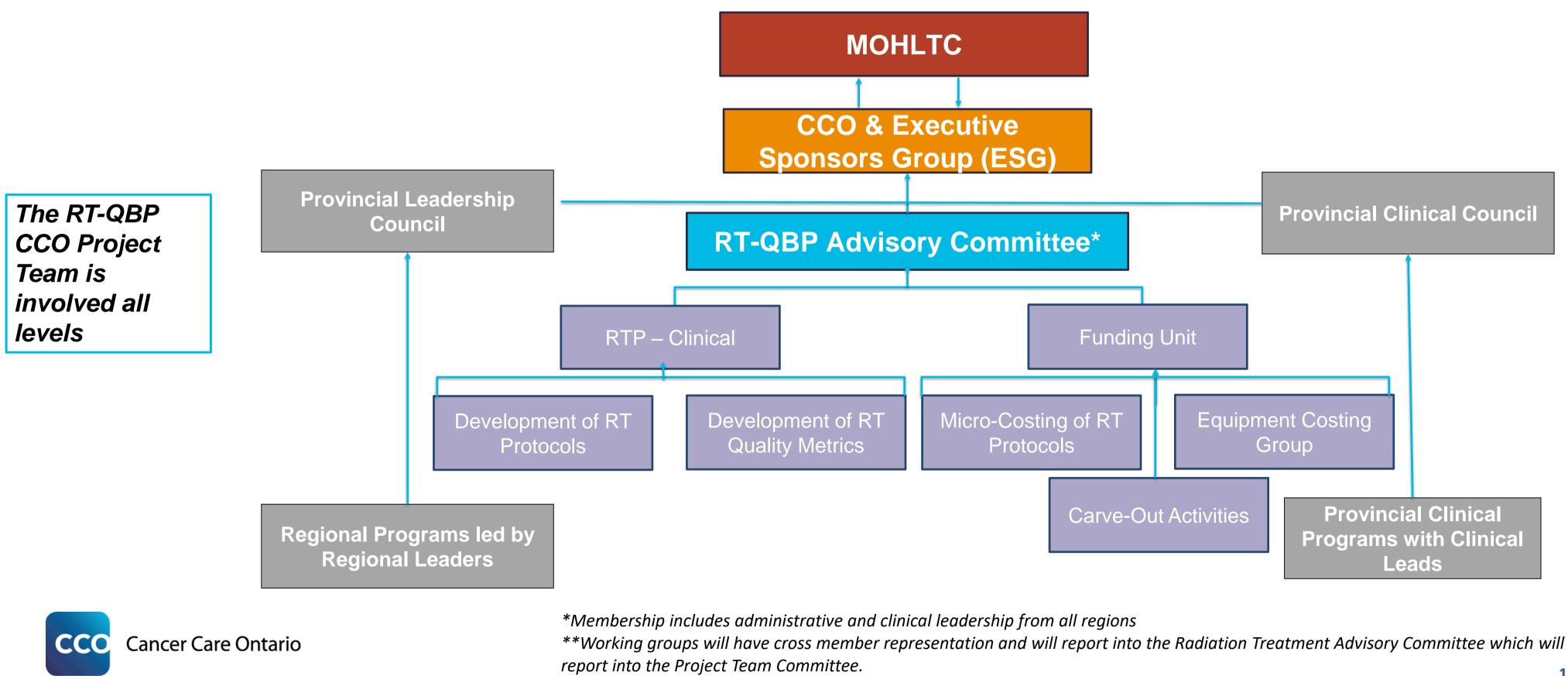
Thank you for your ongoing support!

Overview of RT-QBP Committee and Group Membership

Overview of RT-QBP Committee and Group Memberships

	Advisory Committee	Disease Specific Working Group	Disea Grou
Purpose	 Provides ongoing advice and counsel to CCO on the development and implementation of the RT- QBP, with particular focus on the development of the clinical handbook 	- Provides advice on clinical best practice, feedback and expertise on the selection of disease site Radiation Treatment Protocols, review quality metrics and provide input on RT resources to guide costing development	- Pro QBP expe preli anal litera disea
Meeting Frequency	- In-person or teleconference every 6 weeks to 8 weeks including 1-2 in person meetings	 1-2 full day, in-person or teleconference meetings Members may be asked to review information via email and provide their feedback 	- 2-3 - Me revie and
Membership Process	 Selected based on a nomination from each region's RVP or RCC Director 	- Selected based on a nomination from each region's RVP or RCC Director	- Sel Clini - RV will b Pane
Reporting Structure	 Reports to CCO and the Executive Sponsors Group via the RT-QBP Project Team 	 Reports to the Advisory Committee via the RT- QBP Project Team 	- Re Clini

ease Specific Expert Panel


rovide advice to the RT-P Clinical Lead and pertise in completing eliminary work on data alysis, quality metrics and rature scans specific to the ease site

3 teleconference meetings embers may be asked to iew information via email d provide their feedback

elected by the RT-QBP nical Lead VPs and RCC Directors be informed of Expert nel members via email

eports to the RT-QBP nical Lead

RT-QBP Governance

***Additional time limited working groups will be established as the QBP evolves

Hematology Expert Panel Group Membership

Hematology Expert Panel Members:

Name	Hospital
Richard Tsang	Princess Margaret Cancer Centre
Jonathan Sussman	Juravinski Cancer Centre
Rajiv Samant	The Ottawa Hospital
Matthew Follwell	North Simcoe Muskoka
May Tsao	Odette Cancer Centre
Youssef Youssef	Lakeridge
Catherine de Metz	Cancer Centre of South Eastern Ontario
Margaret Hart (Advisory Committee Member)	Cancer Care Ontario – Clinical Quality Lead RT
Michael Brundage (Advisory Committee Member)	Cancer Care Ontario – Clinical Quality Lead RO
Jean-Pierre Bissonnette (Advisory Committee Member)	Cancer Care Ontario – Clinical Quality Lead Physics

Evidence-based sources for RT protocols

Evidence-based sources for RT protocols

- Existing literature
- NCCN guidelines
- ASTRO guidelines
- Radiotherapy dose fractionation 3rd ed. UK
- Program in Evidence-Based Care, CCO
- American College of Radiology
- PEBC
- ILROG
- Provincial and RCC-specific data
- iPort
- Clinical expertise from Hematology **Expert Panel**

Evidence Summary 26-5

A Quality Initiative of the Program in Evidence-Based Care (PEBC), Cancer Care Ontario (CCO)

Follow-up Care for Survivors of Lymphoma who have **Received Curative-Intent Treatment**

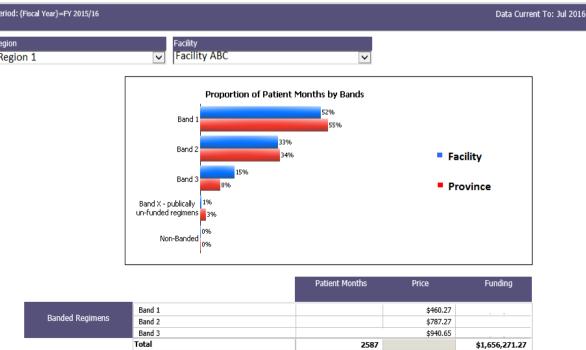
J. Sussman, N. Varela, M. Cheung, L. Hicks, D. Kraftcheck, J. Mandel, G. Fraser, L. Jimenez-Juan, A. Boudreau, S. Sajkowski, R. McQuillan.

Report Date: April 12, 2016

An assessment conducted in November 2018 deferred the review of Evidence Summary (ES) 26-5. This means that the document remains current until it is assessed again next year. The PEBC has a formal and standardized process to ensure the currency of each document (PEBC Assessment & Review Protocol)

You can access ES 26-5 here: https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/471

Table of Contents


Lvidence Summary 26-5	
REFERENCES	
Appendix 1: Members of the lymphoma	fol
Appendix 2: Conflict of interest	
Appendix 3: Literature Search Strategy Appendix 4: Quality assessment for incl Appendix 5: Members of the Hematolog	STP
Appendix 4: Quality assessment for incl	Provi
Appendix 5: Members of the Hematolog	Per
	Rec
	ĸec

1	
low-up working group27	

. 28 POO4 - Palliative Treatment and Palliative Supportive Care, Off Treatment ides a breakdown of parenteral palliative treatment volumes by band and palliative supportive care, off treatment vol

diation Oncology logy • physics

Clinical Investigation: Lymphoma and Leukemia

Modern Radiation Therapy for Nodal Non-Hodgkin Lymphoma—Target Definition and Dose Guidelines From the International Lymphoma Radiation Oncology Group

Tim Illidge, MD, PhD,* Lena Specht, MD,[†] Joachim Yahalom, MD,[‡] Berthe Aleman, MD, PhD,[§] Anne Kiil Berthelsen, MD,^{||} Louis Constine, MD,[¶] Bouthaina Dabaja, MD,[#] Kavita Dharmarajan, MD,[‡] Andrea Ng, MD,** Umberto Ricardi, MD,^{††} and Andrew Wirth, MD,^{‡‡}, on behalf of the International Lymphoma Radiation Oncology Group

*Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, The Christie National Health Service Foundation Trust, Manchester, United Kingdom; [†]Department of Oncology and Hematology Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; [‡]Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; [§]Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands; ^{II}Department of Radiation Oncology and PET Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; ^IDepartments of Radiation Oncology and Pediatrics, James P. Wilmot Cancer Cente University of Rochester Medical Center, Rochester, New York; [#]Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; **Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts; thRadiation Oncology Unit, Department of Oncology, University of Torino, Torino, Italy; and ¹¹Division of Radiation Oncology, Peter MacCallum Cancer Institute, St. Andrews Place, East Melbourne, Australia

ived Nov 15, 2013, and in revised form Jan 7, 2014. Accepted for publication Jan 8, 2014

Radiation therapy (RT) is the most effective single modality for local control of non-Hodgkin lymphoma (NHL) and is an mportant component of therapy for many patients. Many of the historic concepts of dose and volume have recently been challenged by the advent of modern imaging and RT planning tools. The International Lymphoma Radiation Oncology Group (ILROG) has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines epresent an agreed consensus view of the ILROG steering committee on the use of RT in NHL in the modern era. The roles reduced volume and reduced doses are addressed, integrating modern imaging with 3-dimensional planning and advanced ques of RT delivery. In the modern era, in which combined-modality treatment with systemic therapy is appropriate, the ues that

> This project was supported by The Connecticut Sports Four The Global Excellence Program of the Capital Region of Denmar Conflict of interest: none.

> Acknowledgments-The authors thank Ms. Jessi S rdinating the International Lymphoma Radiation Oncology Grou

EXAMPLE: Breast Cancer Treatment Protocols and Quality Metrics

Cancer Care Ontario

Proposed Treatment Protocols for Breast Cancer (External Beam)

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Number of Fractions	Dose per Fraction (Gy)	<u>Estimated</u> Provincial Frequency
Chest Wall/ Breast Tangent Hypo +/- boost	BREAST_HYPO	40 – 43.2	15 – 16	2.5 -2.88	3595 (46.49%)#
Chest Wall/ Breast Tangent +/- boost	BREAST_CF	45 -52	23 - 28	2	539 (6.97%)*
Partial breast hypo	BREAST_PAR_HYPO	40 - 43.2	15 – 16	2.5 -2.88	3595 (46.49%)#
Partial breast	BREAST_PAR_CF	45 -52	23 - 28	2	539 (6.97%)*
Chest Wall/Breast Tangent Hypo +/- boost + Nodal RT hypo	BREAST_FULL_HYPO	40 – 43.2 + 40 - 43.2	15 – 16 + 15 - 16	2.5 -2.88 + 2.5- 2.88	341 (4.41%)
Chest Wall/Breast Tangent +/- boost + Nodal RT	BREAST_FULL_CF	50 - 52 + 45 - 49.99	25 – 28 + 23 – 25	2 + 1.6 - 2	2066 (26.72%)
Accelerated Partial Breast Irradiation (APBI)	BREAST_ACC_PAR	27.5 -40 (daily or BID)	10 - 13	3 - 3.85	46 (0.59%)
Nodal RT +/- boost	BREAST_NODAL_ONL Y_CF	45 -52	23 - 28	2	78 (1%)

Boost dose fractionation and bolus application as per institutional guidelines

Hematology Proposed Treatment Protocols

Lymphomas

22

Proposed Treatment Protocols- Hodgkin Lymphoma

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
Favorable Hodgkin Lymphoma ISRT, IFRT	HEME_HL_ISRT_IF RT	20-30 Gy	10-20	1.5-3 Gy	
Hodgkin Lymphoma ± boost ISRT, IFRT	HEME_HL_BOOST_ ISRT_IFRT	30-40 Gy ± 10 Gy (total of up to 50 Gy)	15-20 ± 5	1.5-2 Gy	

Proposed Treatment Protocols- Non-Hodgkin Lymphoma

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
Indolent Non-Hodgkin Lymphoma ISRT, IFRT	HEME_NHL_ISRT_I FRT	20-36 Gy	10-20	1.5-3 Gy	Definitive treatment No chemo
Aggressive Non-Hodgkin Lymphoma ± boost ISRT, IFRT	HEME_NHL_AGG_I SRT_IFRT	30-40 Gy± 10 Gy (total of up to 50 Gy)	15-20 ± 5	1.5-2 Gy	
Thorax lymphoma ± boost ISRT	HEME_THORAX_LY MPH_ISRT	25-40 Gy ± 10 Gy (total of up to 50 Gy)	15-20 ± 5	1.5-2 Gy	ABC
Abdomen lymphoma ± boost ISRT	HEME_AB_LYMPH_ ISRT	25-40 Gy ± 10 Gy (total of up to 50 Gy)	15-20 ± 5	1.5-2 Gy	4D CT

Proposed Treatment Protocols- Non-Hodgkin Lymphoma

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
CNS lymphoma 1 or 2 Phase With chemo ± boost ISRT	CNS_BRAIN_LYMP HO_2P_CHEMO±B OOST HEME_LYMPH_2P_ CHEMO_BOOST	23-36 Gy (WBRT) ± boost to 45 Gy	12-20 ± 5	1.5-2 Gy	For less than complete response **taken from CNS working group**
CNS lymphoma No chemo ± boost ISRT	CNS_BRAIN_LYMP HO_2P_NOCHEMO ±BOOST HEME_LYMPH_2P_ NOCHEMO_BOOST	30-50 Gy (WBRT) ± boost	15-28 ± 5-12	1.5-2 Gy	**taken from CNS working group**
H&N lymphoma ± boost ISRT	HN_LYMPHOMA HEME_HNLYMPH_I SRT	25-40 Gy ± 10 Gy (total of up to 50 Gy)	15-20 ± 5	1.5-2 Gy	**taken from H&N working group**

Proposed Treatment Protocols- Lymphoma

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
Mycosis Fungoides Standard fractionation Total body skin electron beam therapy (TSEB)	HEME_MF_STD_TSEB	12 Gy	6-12	1.0-2.0 Gy	Over 2-3 weeks
Mycosis Fungoides Alternate fractionation Total body skin electron therapy	HEME_MF_AF_TSEB	24-36 Gy	24-36	1-1.2 Gy	Over 4-9 weeks
Mycosis Fungoides Patch radiotherapy	HEME_MF_PATCH	4-20 Gy	1-10	2-8 Gy	includes "boom-boom"
Mycosis Fungoides Active Surveillance					
Multiple Myeloma	HEME_MMYELO MA	8-40 Gy	1-20	2-8 Gy	
Solitary plasmacytoma	HEME_SOLI_PLA SMA	30-50 Gy	10-28	1.8-3 Gy	

Proposed Treatment Protocols- Lymphoma 'Other'

.	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
Lymphoma Other	HEME_LYMPH_O THER	20-50 Gy	11-28	1.8-2 Gy	eg – extranodal NK/T cell lymphoma, nasal type

Proposed Treatment Protocols- short course lymphoma

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
Short course lymphoma	HEME_LYMPH_SH ORT	4 Gy	2	2 Gy	Includes "boom-boom"
Other short course Single	HEME_LYMPH_SH ORT_OTHER	4-8 Gy	1	4-8 Gy	
Other short course Multi	HEME_LYMPH_SH ORT_OTHER_MUL TI	12-30 Gy	4-10	3-4 Gy	

Leukemias

29

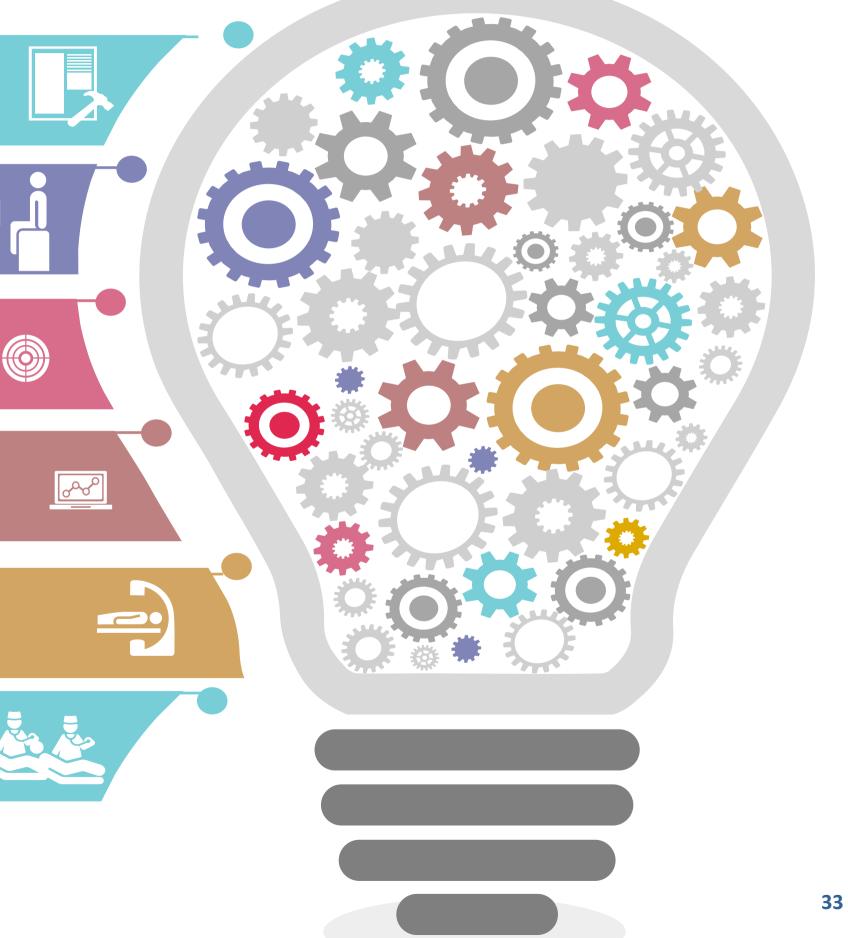
Proposed Treatment Protocols- Leukemia

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
Total Body Irradiation (prior to stem cell transplant) BID OR TID	HEME_LEUK_TBI _BID_TID	10-15 Gy	6-10	1.5-2	Over 3-4.5 days From ASTRO **Note to FU – TDL measurements will be required**
Total Body Irradiation (prior to stem cell transplant) 1x daily	HEME_LEUK_TBI	12 Gy	4	3 Gy	FROM ASTRO **Note to FU – TDL measurements will be required**
Total Body Irradiation (prior to stem cell transplant) Single	HEME_LEUK_TBI _SINGLE	2-5 Gy	1-2	2-5 Gy	
Pre-transplant testicular boost	HEME_LEUK_TE STICULAR	4-12 Gy	1-6	2-4 Gy	
Pre-transplant CNS boost	HEME_LEUK_CN S	4-12 Gy	1-6	2-4 Gy	
Low dose spleen (leukemia, MDS, or related conditions)	HEME_LEUK_LO W	2-6 Gy	1-10	0.3-6 Gy	Includes "boom-boom" and Baltimore Protocol

Proposed Treatment Protocols- Short course leukemia

RT Protocol Long Form	RT Protocol Short Form	Proposed Range (Gy)	Total Fractions	Dose per Fraction (Gy)	Comment
CNS leukemia Whole brain prophylaxis	HEME_LEUK_CN S_WB_SHORT	12-24 Gy	8-16	1.5-2 Gy	
Short course					
CNS leukemia Craniospinal	HEME_LEUK_CN S_CS_SHORT	12-24 Gy	8-16	1.5-2 Gy	
Short course					
Testicular leukemia	HEME_LEUK_TE STICULAR	20-24 Gy	5-12	2-4 Gy	
Short course leukemia	HEME_LEUK_SH ORT	8-30 Gy	1-10	3-8 Gy	

Quality Metrics (QM) Development



32

Quality Metrics Development

01	Infrastructure	
02	Pre-Treatment Phase	
03	Imaging and Planning Phase.	
04	Quality Assurance Phase	
05	Treatment Phase	
06	Post-Treatment Phase.	

Quality Metrics

Quality Indicators that will apply across all RT Protocols

- Peer Review QA
- Physics and Therapy QA
- Etc...

Quality Indicators that may be RT Protocol Specific

- VMAT may require patient specific measurements
- Brachytherapy may have specific quality metrics \bullet
- On Treatment imaging may be disease specific Daily for some but maybe not others

EXAMPLE: Proposed Quality Metrics - Breast Cancer

Proposed Quality Metrics - Breast Cancer (Intact Breast and Where Appropriate, Chest Wall/Nodal Areas)

Pre-treatment

The following should be considered:

- Bilateral diagnostic mammography prior to treatment
- > Documentation of: family history, co-morbidities, smoking history, menopausal status, radiation therapy contraindications, post-operative complications, presence of a pacemaker, discussion of breast reconstruction (if applicable), results of physical at consultation.
- Patient management discussion at a multidisciplinary team meeting.
- > The first cancer centre oncologic evaluation within 4 weeks of the definitive surgery date.
- > Imaging of the chest, liver and bones prior to definitive or adjuvant therapy for stage III patients.

Proposed Quality Metrics - Breast Cancer (Intact Breast and Where Appropriate, Chest Wall/Nodal Areas)

Imaging and Planning

- Cardiac Delineation and Avoidance:
- > The heart should be contoured on the treatment planning computed tomography scan in accordance with Radiation Therapy Oncology Group guidelines. Tangent beams should be delineated to minimize the dose to the heart. The mean heart dose should be as low as reasonably achievable. Active Breath Control techniques/ Deep inspiration breath hold, prone positioning, and/or heart blocks should be used as appropriate to minimize normal tissue exposure.
- > For patients unable to tolerate breath-hold, the reverse semi-decubitus technique is an alternative approach to reduce cardiac dose (for left breast and internal mammary chain irradiation).
- Cardiac DVH should be part of the published plan.

Normal Tissue Doses:

> Treatment techniques should also minimize dose to the contralateral breast, lung, and other normal tissues. A lung DVH should be part of the published plan.

Cancer Care Ontario

Quality Metrics – Hematologic Cancers

Institutional Expectations

Institutional Policies should be developed outlining:

- Pre-treatment assessment and documentation 1.
- CT simulation protocols (MRI Simulation, where indicated) and planning protocols including dose targets and constraints. 2. Imaging from PET should be used in planning, where possible.
- Quality Assurance (QA) 3.
- Treatment protocols to include frequency of imaging and image matching strategies 4.
- 5. Post-treatment follow-up

Pre-treatment

Documentation:

- Full history and physical examination (clinical history, baseline clinical examination and performance status, histology, FBC, CBC, LDH, biochemical profile, bone marrow evaluation)
- Institutions should have a clearly defined policy for cardiac implantable electronic devices (CIEDs), such as pacemakers and defibrillators \succ

As an example: https://www.heartrhythmjournal.com/article/S1547-5271(17)30453-8/fulltext

Pre-treatment imaging

- > CT head and neck, thorax, abdomen, pelvis. In some instances, MRI may be of value (e.g. CNS lymphoma, disease in H&N)
- > FDG-PET scan as per Provincial eligibility
- > For patients receiving radiation after chemotherapy, PET-CT/CT scans before and after treatment are used to determine the involved sites and residual disease. PET-CT pre and post chemotherapy is advised for ISRT

References: London Cancer Org, Radiotherapy UK edition, ASCO

Imaging and Planning

Imaging for treatment planning

- CT scan is used for planning
 - Slices should be no thicker than 3mm
 - > Contrast should be considered to improve identification of vasculature and assist in targeting nodal changes.
 - > For more information on imaging practices in lymphoma, please see the guidelines by the International Lymphoma Radiation Oncology Group (ILROG):

Mikhaeel, N. G., Milgrom, S. A., Terezakis, S., Berthelsen, A. K., Hodgson, D., Eich, H. T., ... & Specht, L. (2019). The optimal use of imaging in Radiation Therapy for lymphoma-Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). International Journal of Radiation Oncology* Biology* Physics.

Imaging and Planning

Breath Holds

> Consider 4D imaging or deep inspiratory breath-hold technique for disease sites significantly affected by respiratory motion. As an example, please reference ILROG:

Specht, L., Yahalom, J., Illidge, T., Berthelsen, A. K., Constine, L. S., Eich, H. T., ... & Ng, A. (2014). Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). International Journal of Radiation Oncology* Biology* Physics, 89(4), 854-862.

> Consider ABC breathing control for patients with any thorax-related radiation therapy. As an example, please see: Charpentier, A. M., Conrad, T., Sykes, J., Ng, A., Zhou, R., Parent, A., ... & Hodgson, D. C. (2014). Active breathing control for patients receiving mediastinal radiation therapy for lymphoma: Impact on normal tissue dose. *Practical radiation oncology*, 4(3), 174-180.

Cardiac & Lung Delineation and Avoidance

> The heart and lung should be contoured for any thorax or any upper abdominal treatment planning in accordance with institutional guidelines. Beams should be delineated to minimize the dose to the heart and lung using the ALARA principle. Active Breath Control techniques/ Deep inspiration breath hold, prone positioning, and/or heart blocks should be used as appropriate to minimize normal tissue exposure.

Imaging and Planning

Dose constraints and contouring

 \succ HL and NHL – as an example of dose constraints and contouring, please see ILROG guidelines: Illidge, T., Specht, L., Yahalom, J., Aleman, B., Berthelsen, A. K., Constine, L., ... & Wirth, A. (2014). Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. International Journal of Radiation Oncology* Biology* Physics, 89(1), 49-58.

Hoskin, P. J., Diez, P., Williams, M., Lucraft, H., & Bayne, M. (2013). Recommendations for the use of radiotherapy in nodal lymphoma. Clinical oncology, 25(1), 49-58.

> As an example for TBI dose rates and OARs, please see:

Studinski, R. C. N., Fraser, D. J., Samant, R. S., & MacPherson, M. S. (2017). Current practice in total-body irradiation: results of a Canada-wide survey. Current Oncology, 24(3), 181.

ALARA principle

> As low as reasonably achievable (ALARA) principle should be adhered at all times. As an example, please see: Tsang, R. W., & Gospodarowicz, M. K. (2005). Radiation therapy for localized low-grade non-Hodgkin's lymphomas. *Hematological oncology*, 23(1), 10-17.

Imaging and Planning

Position/immobilisation

- \succ Chin up position for neck and SCF sites.
- \succ For head sites clinician to indicate appropriate neck position.
- > Appropriate immobilization for the site being treated is required. In head and neck regions this should include a customized immobilization shell.

Geometric distortion (MRI)

Users should ensure that geometric fidelity is maintained for all images. Distortions due to field inhomogeneities and gradient nonlinearities should be \succ minimized. MR sequences should be validated to minimize the likelihood of susceptibility artefacts.

Quality Assurance:

Peer Review:

> As per CCO Radiation Oncology Peer Review Guidance Document

https://www.cancercareontario.ca/en/node/56286

QA of treatment plans:

QA of all treatment plans shall be performed by a medical physicist and radiation therapist, as per institutional guidelines. \geq

Patient-specific QA (e.g. individual patient dosimetry for VMAT):

As per CPQR guidelines. \succ

QA for Radiation Programs

- > CPQR Quality Assurance Guidelines for Canadian Radiation Treatment Programs
- CPQR Technical Quality Control Guidelines for Canadian Radiation Treatment Programs

Treatment

Treatment technique:

- > Involved Site Radiotherapy (ISRT) is preferred treatment modality over Involved Field Radiotherapy (IFRT), when clinically appropriate.
- Conformal plan with field arrangements devised according to treatment site.
- Respiratory management should be considered. As an example, please see:

Aznar, M. C., Maraldo, M. V., Schut, D. A., Lundemann, M., Brodin, N. P., Vogelius, I. R., ... & Petersen, P. M. (2015). Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both?. International Journal of Radiation Oncology* Biology* Physics, 92(1), 169-174.

For information on TBI in lymphoma patients, please refer to the ASTRO guideline:

Wong, J. Y., Filippi, A. R., Dabaja, B. S., Yahalom, J., & Specht, L. (2018). Total body irradiation: guidelines from the international lymphoma radiation oncology group (ILROG). International Journal of Radiation Oncology* Biology* Physics, 101(3), 521-529.

For Early Hodgkin's lymphoma, please refer to the PEBC guide:

https://www.cancercareontario.ca/sites/ccocancercare/files/guidelines/summary/pebc6-20s.pdf

Post-Treatment

Follow-up:

- > Institutional policies, should have guidelines regarding follow-up. As an example of follow-up guidelines with any provider, please see the PMH guidelines below:
- First year visits every 3 months
- 2-3 years visits every 4 months
- 4-5 years visits every 6 months
- >5 years annual follow-up
- \succ These follow-up treatments can be shared between providers.

PSO support:

- > PSO support (psychology counselling) should be provided to patients post-treatment, particularly in survivorship. As an example, please see the PEBC Survivorship guidelines for curative intent: https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/471
- > Secondary cancers are of concern high risk breast screening and surveillance/monitoring where appropriate.

Questions for consideration

48

Other things to consider for the Hematology RT-QBP

- Are there any group of patients which will be "active patients not on treatment" in radiation \bullet oncology clinics?
 - YES MF patients. \bullet
- Clinical trials and the Heme RT-QBP
 - Yes, but not many trials in radiation (low dose prior to CAR-T). \bullet
- Cases seen in consultation for RT, but not treated with RT? (I.e. requires nursing, clinic time, etc)
 - YES advanced-staged lymphoma \bullet
- **PSO Support**
- Oligomets
 - Could be treating numerous sites (hemi-body radiotherapy) one fraction in bone mets for upper OR lower body
 - **FOR DISCUSSION**

Cancer Care Ontario

Next Steps

- Finalize treatment protocols
- Members to review proposed quality metrics

Next meeting – TBD

50

Timelines

High Level RT-QBP Gantt-Clinical Development Activities

QBP completion QBP go-live in RCCs

Fiscal Year	FY 2018-19			FY 2019-20				FY 2020-21				FY 2021-22				
Fiscal Year Quarters	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Phase 1														•		
GU																
Breast																
Gastrointestinal																
Lung																
Sarcoma																
Head & Neck																
CNS (primary)																
CNS (brain mets)																
Clinical Handbook Development																
Phase 2																
Skin																
Peds																
Endocrine																
Gynecological Cancers																
Hematology																
Bone Mets																L
Other / Ongoing Discussion																L
Clinical Handbook Development																
Additional Working Groups																
Physics Plan Check Group																
Equipment Costing Group																L
Others as needed																
Reporting Working Group																
Operations and Implementation																
6 Months for Hospitals Prior to																
Implementation																

Notes / Assumptions

Clinical disease sites timeline estimates are based on progress with the first four disease sites underway and include all activities up to the completion of the patient level data review with the funding team

Timeline Reference	
Q1	Apr 1 - Jun 30
Q2	Jul 1 - Sep 30
Q3	Oct 1 - Dec 31
Q4	Jan 1 - Mar 31

Objectives for Today

Expert Panel Hematology meeting #1:

To provide an overview of the Radiation Therapy QBP (RT-QBP) process

To review the dose/fractionation data for Hematology

To come to a consensus about RT protocols for hematology, including dose/fractionation ranges for each protocol

Discuss quality metrics for RT QBP, and assign "leads" for the quality metrics work

Discuss any question or concerns about the RT QBP and provide feedback

Identify and record RT-QBP risk registry items

CCO

Questions?

