

Guideline 1-25 GL

A Quality Initiative of the Program in Evidence-Based Care (PEBC), Ontario Health (Cancer Care Ontario)

Preoperative Breast Magnetic Resonance Imaging Guideline

Derek Muradali, Glenn G. Fletcher, Erin Cordeiro, Samantha Fienberg, Ralph George, Supriya Kulkarni, Jean Seely, Rola Shaheen, Andrea Eisen, and the Preoperative Breast MRI Expert Panel

Report Date: March 24, 2023

The evidence base for this guideline is Evidence Summary 1-25 ES plus some additional analysis of the data in the current document. 1-25 ES is available at https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/70786

An assessment conducted in November 2024 deferred the review of Guideline 1-25. This means that the document remains current until it is assessed again next year. The PEBC has a formal and standardized process to ensure the currency of each document (PEBC Assessment & Review Protocol)

Guideline 1-25 is comprised of 5 sections. You can access the summary and full report here:

https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/1096

Section 1: Recommendations

Section 2: Guideline - Recommendations and Key Evidence

Section 3: Guideline Methods Overview

Section 4: Evidence Base

Section 5: Internal and External Review

For information about this document, please contact Derek Muradali, the lead author, through the PEBC office at:

Phone: 905-527-4322 ext. 42822 Fax: 905-526-6775 E-mail: ccopgi@mcmaster.ca

For information about the PEBC and the most current version of all reports, please visit the OH (CCO) website at https://www.cancercareontario.ca/en/guidelines-advice or contact the PEBC office at:

Phone: 905-527-4322 ext. 42822 Fax: 905-526-6775 E-mail: ccopgi@mcmaster.ca

PEBC Report Citation (Vancouver Style): Muradali D, Fletcher GG, Cordeiro E, Fienberg S, George R, Kulkarni S, et al. Preoperative Breast Magnetic Resonance Imaging Guideline. Toronto (ON): Ontario Health (Cancer Care Ontario); 2023 March 24. Program in Evidence-Based Care Guideline No.: 1-25 GL.

PUBLICATIONS RELATED TO THIS REPORT

Muradali D, Fletcher GG, Cordeiro E, Fienberg S, George R, Kulkarni S, Seely JM, Shaheen R, Eisen A. Preoperative Breast Magnetic Resonance Imaging: An Ontario Health (Cancer Care Ontario) Clinical Practice Guideline. Current Oncology 2023; 30(7):6255-6270. https://doi.org/10.3390/curroncol30070463

Eisen A, Fletcher GG, Fienberg S, George R, Holloway C, Kulkarni S, Seely JM, Muradali D. Breast Magnetic Resonance Imaging for Preoperative Evaluation of Breast Cancer: A Systematic Review and Meta-Analysis. Canadian Association of Radiologists Journal. 2023;0(0). https://journals.sagepub.com/doi/10.1177/08465371231184769

Copyright

This report is copyrighted by Ontario Health (Cancer Care Ontario); the report and the illustrations herein may not be reproduced without the express written permission of Ontario Health (Cancer Care Ontario). Ontario Health (Cancer Care Ontario) reserves the right at any time, and at its sole discretion, to change or revoke this authorization.

Disclaimer

Care has been taken in the preparation of the information contained in this report. Nevertheless, any person seeking to consult the report or apply its recommendations is expected to use independent medical judgment in the context of individual clinical circumstances or to seek out the supervision of a qualified clinician. Ontario Health (Cancer Care Ontario) makes no representations or guarantees of any kind whatsoever regarding the report content or its use or application and disclaims any responsibility for its use or application in any way.

Table of Contents

Section 1: Recommendations
Section 2: Guideline - Recommendations and Key Evidence
Section 3: Guideline Methods Overview14
Section 4: Evidence Base
Section 5: Internal and External Review
References
Appendix 1. Affiliations and Conflict of Interest Declarations98
List of Tables and Figures
Table 2-1. Potential benefits and harms of preoperative MRI4
Table 4-1. Risk of bias for RCTs
Table 4-1a. Risk of bias using ROB2 for mastectomy rates
Table 4-1b. Risk of bias using ROB2 for positive resection margins
Table 4-1c. Risk of bias using ROB2 for reoperations, re-excisions, and conversion mastectomy.
Table 4-1d. Risk of bias using ROB2 for recurrence and survival outcomes
Table 4-2. Risk of bias for included studies
Table 4-2a. Mastectomy rates - Patient population not defined by type of surgery planned before MRI
Table 4-2b. Mastectomy outcome in studies with only breast conserving surgery candidates
Table 4-2c. Positive margins, reoperation, re-excision, conversion to mastectomy 30
Table 4-2d. Contralateral breast cancer, recurrence, and survival
Figure 4-1. Forest plots for mastectomy rates
Figure 4-1a. Initial mastectomy rate, subdivided by studies where patients were restricted to those assigned to breast conserving surgery prior to MRI or all preoperative patients were allowed
Figure 4-1b. Initial mastectomy rate by cancer subtype/stage (excluding studies restricted to breast conserving surgery)
Figure 4-1c. Final (overall) mastectomy rate, subdivided by studies where patients were restricted to those assigned to breast conserving surgery prior to MRI or all preoperative patients were allowed
Figure 4-1d. Final mastectomy rate by cancer subtype/stage (excluding studies restricted to breast conserving surgery)
Figure 4-2. Forest plots for positive margins

Guideline 1-25 GL

Figure 4-2a. Positive margins (all studies) 40
Figure 4-2b. Positive margins by cancer stage/subtype
Figure 4-3. Forest plots for additional surgery
Figure 4-3a. Reoperations, by stage/subtype
Figure 4-3b. Reoperations, by RCT or non-RCT studies
Figure 4-3c. Re-excisions, by stage/subtype
Figure 4-3d. Re-excisions, by RCT or non-RCT studies
Figure 4-3e. Conversion mastectomy, by stage/subtype
Figure 4-3f. Conversion mastectomy, by RCT or non-RCT
Figure 4-4. Forest plots for contralateral breast cancer
Figure 4-4a. Synchronous contralateral breast cancer
Figure 4-4b. Metachronous contralateral breast cancer
Figure 4-5. Forest plots for survival or recurrence
Figure 4-5a. Recurrence by recurrence type reported
Figure 4-5b. Recurrence (any type)
Figure 4-5d. Overall survival
Table 4-3. Summary of odds or hazard ratios and confidence intervals from forest plots. \dots 52
Table 4-4. Summary of findings from GRADEPro
Table 4-4a. MRI versus no MRI for treatment planning (outcome is mastectomy rate) 54
Table 4-4b. MRI versus no MRI for treatment planning (outcome is positive margins) 56
Table 4-4c. MRI versus no MRI for treatment planning (outcome is additional surgery) 57
Table 4-4d. MRI versus no MRI for treatment planning (outcome is contralateral cancer) 59
Table 4-4e. MRI compared to no MRI for treatment planning (outcome is survival or recurrence).
Table 4-5. Grade profiles from GRADEPro
Table 4-5a. MRI compared to no MRI for treatment planning (outcome is mastectomy rate). 61
Table 4-5b. MRI compared to no MRI for treatment planning (outcome is positive margins). 63
Table 4-5c. MRI compared to no MRI for treatment planning (outcome is additional surgery).
Table 4.5d. ADI assessed to an ADI for two broads along in a fortunation (subsessed assessed assessed)
Table 4-5d. MRI compared to no MRI for treatment planning (outcome is contralateral cancer).
Table 4-5e. MRI compared to no MRI for treatment planning (outcome is survival or recurrence).
67
Table 5-1. Summary of the Working Group's responses to comments from the Patient Consultation Group
Table 5-2. Summary of the Working Group's responses to comments from the Expert Panel. 69

Guideline 1-25 GL

Table 5-3. Summary of the Working Group's responses to comments from the Report Approval Panel
Table 5-4. Responses to nine items on the targeted peer reviewer questionnaire
Table 5-5. Summary of the Working Group's responses to comments from targeted peer reviewers
Table 5-6. Responses to four items on the professional consultation survey
Table 5-7. Summary of the Working Group's responses to comments from professional consultants
Table A1-1. Members of the Preoperative Breast MRI Working Group
Table A1-2. Members of the Preoperative Breast MRI Patient Consultation Group 99
Table A1-3. Members of the Preoperative Breast MRI Expert Panel

Preoperative Breast Magnetic Resonance Imaging Guideline

Section 1: Recommendations

This section is a quick reference guide and provides the guideline recommendations only. For background, potential benefits and harms, key evidence associated with each recommendation, and technical and implementation considerations, see Section 2.

GUIDELINE OBJECTIVES

To make recommendations about whether preoperative breast magnetic resonance imaging (MRI) should be added to conventional imaging (mammography and/or ultrasound) in patients with newly diagnosed breast cancer, and to make recommendations about specific indications if evidence allows.

TARGET POPULATION

Patients diagnosed with breast cancer of any stage for which additional information on disease location or extent in the breast obtained prior to surgery may influence staging, treatment, or prognosis. The guideline does not address patients diagnosed with breast cancer but without an identified cancerous lesion in the breast (occult breast cancer).

INTENDED USERS

- 1. Radiologists, surgeons, and other clinicians involved in determining extent of disease and treatment of patients diagnosed with breast cancer.
- 2. Members of the Breast Cancer Advisory Committee, Ontario Health (Cancer Care Ontario) (OH [CCO]) staff, and others involved in the review and update of the Breast Cancer Pathway Map [see https://www.cancercareontario.ca/en/pathway-maps/breast-cancer].

RECOMMENDATIONS

Recommendation 1

Preoperative breast MRI *should be considered* on a case-by-case basis in patients diagnosed with breast cancer for whom additional information about disease extent could influence treatment. The ensuing decision of whether to conduct MRI should be made in consultation with the patient and must take into account the balance of benefits and risks and patient preferences.

Stronger recommendations for specific situations are provided in Recommendations 2 and 3.

Qualifying Statements for Recommendation 1

- Benefits and harms (see Key Evidence and Table 2-1) may vary depending on patient and disease characteristics such as breast density, tumour size, tumour stage, number and distribution of tumours (multicentric or multifocal), subtype of cancer, type of surgery being considered or preferred, adjuvant treatment, and patient factors/comorbidities.
- System issues such as MRI availability may result in treatment delays that may modify the decision.
- "Treatment" in the recommendation includes surgery as well as radiation and systemic treatment.

- In patients with strong preference for mastectomy or with contraindications to breast conserving surgery (BCS), MRI is unlikely to change surgical planning in the ipsilateral breast. Breast MRI may still impact treatment if mammographically occult contralateral breast cancer (CBC) is detected.
- Contrast-enhanced mammography (contrast-enhanced spectral mammography, contrast-enhanced digital mammography), diffusion-weighted imaging (DWI) MRI, magnetic resonance spectroscopy, or other advanced imaging techniques are known to provide additional information beyond that of conventional imaging and be suitable instead of or in addition to CE-MRI. Potential adverse effects due to contrast agent and radiation exposure vary among these techniques, whereas many other potential benefits and harms in Table 2-1 would be relevant. These are mentioned briefly in the systematic review, but evaluation was outside of scope. They are less widely available and there is much less evidence regarding their effect on patient outcomes.

Recommendation 2

Preoperative breast MRI *is recommended* in patients diagnosed with invasive lobular carcinoma (ILC) for whom additional information about disease extent could influence treatment. The decision of whether to conduct MRI should be made in consultation with the patient and must take into account the balance of benefits and risks and patient preferences.

Qualifying Statements for Recommendation 2

- Risks and benefits will vary depending on patient and disease characteristics.
- System issues such as MRI availability may result in treatment delays that may modify the decision.

Recommendations related to MRI and treatment planning but without comparative studies in the Evidence Summary

Recommendation 3

Preoperative breast MRI *is recommended*, based on the opinion of the Working Group, in the following situations:

- a) To aid in surgical planning of BCS in patients with suspected or known multicentric or multifocal disease.
- b) To identify additional lesions in patients with dense breasts.
- c) To determine the presence of pectoralis major muscle/chest wall invasion in patients with posteriorly located tumours or when invasion of the pectoralis major muscle or chest wall is suspected.
- d) To aid in surgical planning for skin/nipple-sparing mastectomies or for autologous reconstruction, oncoplastic surgery, and BCS with suspected nipple/areolar involvement.
- e) Patients with familial/hereditary breast cancer but who have not had recent breast MRI as part of screening or diagnosis.

Qualifying Statements for Recommendation 3

Preoperative breast MRI is recommended in the above situations if additional information about disease extent could influence treatment. The decision of whether to conduct MRI should be made in consultation with the patient and must take into account the balance of benefits and risks and patient preferences.

Preoperative Breast Magnetic Resonance Imaging Guideline

Section 2: Guideline - Recommendations and Key Evidence

GUIDELINE OBJECTIVES

To make recommendations about whether preoperative breast magnetic resonance imaging (MRI) should be added to conventional imaging (mammography and/or ultrasound) in patients with newly diagnosed breast cancer, and to make recommendations about specific indications if evidence allows.

TARGET POPULATION

Patients diagnosed with breast cancer of any stage for which additional information on disease location or extent in the breast obtained prior to surgery may influence staging, treatment, or prognosis. The guideline does not address patients diagnosed with breast cancer but without an identified cancerous lesion in the breast (occult breast cancer).

INTENDED USERS

- 1. Radiologists, surgeons, and other clinicians involved in determining extent of disease and treatment of patients diagnosed with breast cancer.
- Members of the Breast Cancer Advisory Committee, Ontario Health (Cancer Care Ontario) (OH [CCO]) staff, and others involved in the review and update of the Breast Cancer Pathway Map [see https://www.cancercareontario.ca/en/pathway-maps/breast-cancer].

BACKGROUND

Suspected breast cancer based on clinical examination or screening mammography is generally confirmed by diagnostic mammography (with or without ultrasound) and biopsy. Surgery may be preceded by further advanced imaging of higher sensitivity or diagnostic utility, with contrast-enhanced breast MRI (CE-MRI, often referred to as MRI) being the most widely used to characterize locoregional extent of breast cancer. It has been established that MRI has higher sensitivity than mammography and ultrasound; however, there is less consensus on whether the additional information provided by MRI, including detection of additional lesions, improves patient outcomes. Use of breast MRI after diagnosis of cancer but prior to surgery to detect additional breast lesions or provide additional information on disease distribution or extent to guide surgery or systemic therapy is the topic of our recent Evidence Summary (systematic review) (1) and this guideline.

Breast MRI has sensitivity for detecting cancer of greater than 90%, and as high as 97% to 100% (2-5) in some studies of screening or for preoperative use after diagnosis. Studies published prior to 2000 had suggested poor sensitivity for ductal carcinoma in situ (DCIS); however, with improved equipment and radiologist expertise this is no longer the case (6-8). MRI specificity depends on study populations, technical methods, and criteria for interpretation. It is generally greater than 70%, and up to 97% has been reported (2). The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) Atlas sets a benchmark for specificity in screening MRI as 85% to 90% (9).

Benefits and harms of preoperative MRI

It has been established that breast MRI can provide additional information on lesion presence, size, location, and distribution; it is less certain in what circumstances this will lead to better patient outcomes. There are both potential benefits and harms to consider (see

Section 4 and Table 2-1), and the relative importance will vary depending on patient and disease characteristics; technical considerations related to equipment and radiology team expertise; and system considerations such as cost, availability of equipment and staff, and wait lists for MRI and other procedures and consultations.

Table 2-1. Potential benefits and harms of preoperative MRI

Factor	Potential Benefits	Potential Harms
High Sensitivity	 MRI is not impacted by breast density which limits the sensitivity of mammography. Higher cancer detection rates with MRI than mammography, with greater ability to detect occult cancer in the ipsilateral breast with multifocal and multicentric disease. More accurate staging of the contralateral breast reduces the rate of breast cancer detected in follow-up. Allows detection of all cancerous lesions at the start so they can be treated at one time instead of having pre-existing cancers only being detected on short-term follow-up; this can have cost benefit (patient and health-care system), reduce anxiety, and improve quality of life of patients. Confirmation of limited disease may allow more conservative treatment such as partial breast irradiation (including patients with previous radiotherapy), omission of systemic therapy. May allow a longer interval between initial treatment and follow-up imaging. Additional information from MRI reduces the frequency of reoperations to achieve clear margins and reduces rate of unplanned (salvage) mastectomy subsequent to initial BCS. This can have cost benefit (patient and health-care system), reduce surgical complications, reduce anxiety, and improve quality of life of patients. May confirm or rule out the feasibility of nipple-sparing mastectomy. In the setting of Paget disease with negative conventional imaging studies, MRI can identify underlying breast malignancy, facilitating proper treatment planning. 	 Higher breast biopsy rates, including some lesions that will be negative for cancer (i.e., false-positive by MRI). Higher mastectomy rates with MRI when disease extent is greater than shown on conventional imaging. Repeat (short interval follow-up) MRIs may be required for BI-RADS 3 lesions if MRI-guided biopsy was not conducted or with benign breast biopsies. More aggressive surgery or other treatment due to knowledge of additional lesions may not change survival outcomes. MRI is not necessarily more accurate in estimating tumour size than other imaging; the optimal modality may vary with tumour characteristics.
Specificity	Specificity is generally greater than 70%, and up to 97% has been reported (2). MRI specificity depends on study populations, technical methods, and criteria for interpretation.	 Specificity may be lower than mammography in some MRI centres or for some applications. MRI-detected lesions require biopsy for tissue confirmation and may include false-positive lesions.
Patient Factors	 May reduce the mastectomy rate in patients initially opting for mastectomy due to fear of more extensive disease and not due to clinical factors. Reduction in anxiety for some patients as they are more confident regarding appropriateness of treatment planned or received. 	 Some patients are not suitable for MRI (anxiety, claustrophobia, MRI does not accommodate body habitus, other patient concerns) or do not want to undergo this procedure. Increased anxiety for some patients regarding MRI procedure or biopsies, or while waiting for these to occur or results to be reported.

Adverse Effects		 Gadolinium contrast agents may cause allergic reactions (≈0.1% of patients). Gadolinium retention, especially after multiple MRIs, has been reported in the brain; long-term effects are uncertain but have not been reported to date. Accumulation depends on type of contrast agent and cumulative exposure. Nephrogenic systemic fibrosis may occur in patients with acute kidney injury or severe chronic kidney disease; risk varies with type and volume of gadolinium contrast agent used.
Delay in treatment		 Breast MRI use may potentially lead to delays in treatment due to both MRI scheduling and characterization of any identified lesions (biopsies and histopathology analysis/reporting). May increase anxiety for patients while waiting for treatment.
Equity	Universal access to preoperative MRI would result in more health care equity, provided equivalent facilities and staffing are available.	 Breast MRI, including expertise for interpretation, is not available in all centres and some patients may need to travel long distances.
Cost	Better lesion characterization may reduce operative costs by reducing rates of reoperations (direct surgical costs for multiple operations, treating surgical complications, patient time), costs to treat metachronous contralateral breast cancer, and longer-term costs due to decreased recurrence.	 Addition of MRI and subsequent biopsy of lesions will add to the initial diagnostic cost.

Abbreviations: BCS, breast conserving surgery; BI-RADS, Breast Imaging Reporting and Data System; MRI, magnetic resonance imaging

Evidence Base for Recommendations

The Evidence Summary (systematic review) on preoperative breast MRI (1) is the primary evidence base for this guideline. Embase, MEDLINE, and EBM Reviews (Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews) were searched until January 18, 2021. A focused search was conducted in July 2022 (see Section 4), to locate any subsequent publications of the included randomized controlled trials (RCTs) and studies previously indicated to be in progress. The review included eight RCTs, two prospective cohort studies, and forty-three retrospective comparative studies. Minor revision and additional quality assessment of the included studies was conducted as part of the guideline development process (see Section 4 of this document). The Evidence Summary should be consulted for details of each study. Forest plots provide a concise summary of studies for each outcome both overall and for various subgroups (see Figures in Section 4) and data based on the forest plots are provided in Table 4-3. The other tables in Section 4 provide quality assessment according to GRADE (Grading of Recommendations, Assessment, Development and Evaluations; see https://www.gradeworkinggroup.org/) (10, 11). As an aid in interpretating magnitude of effect, an approximation of absolute effects is reported in Tables 4-4 and 4-5 and reproduced in the Key Evidence accompanying the recommendations. Conclusions in Section 4 use standardized wording suggested by Santesso et al (12) and have been modified slightly for use in the Key Evidence.

RECOMMENDATIONS, KEY EVIDENCE¹, AND JUSTIFICATION

Recommendation 1

Preoperative breast MRI *should be considered* on a case-by-case basis in patients diagnosed with breast cancer for whom additional information about disease extent could influence treatment. The ensuing decision of whether to conduct MRI should be made in consultation with the patient and must take into account the balance of benefits and risks and patient preferences.

Stronger recommendations for specific situations are provided in Recommendations 2 and 3. Qualifying Statements for Recommendation 1

- Benefits and harms (see Key Evidence and Table 2-1) may vary depending on patient and disease characteristics such as breast density, tumour size, tumour stage, number and distribution of tumours (multicentric or multifocal), subtype of cancer, type of surgery being considered or preferred, adjuvant treatment, and patient factors/comorbidities.
- System issues such as MRI availability may result in treatment delays that may modify the decision.
- "Treatment" in the recommendation includes surgery as well as radiation and systemic treatment.
- In patients with strong preference for mastectomy or with contraindications to breast conserving surgery (BCS), MRI is unlikely to change surgical planning in the ipsilateral breast. Breast MRI may still impact treatment if mammographically occult contralateral breast cancer (CBC) is detected.
- Contrast-enhanced mammography (contrast-enhanced spectral mammography, contrast-enhanced digital mammography), diffusion-weighted imaging (DWI) MRI, magnetic resonance spectroscopy, or other advanced imaging techniques are known to provide additional information beyond that of conventional imaging and be suitable instead of or in addition to CE-MRI. Potential adverse effects due to contrast agent and radiation exposure vary among these techniques, whereas many other potential benefits and harms in Table 2-1 would be relevant. These are mentioned briefly in the systematic review, but evaluation was outside of scope. They are less widely available and there is much less evidence regarding their effect on patient outcomes.

Key Evidence for Recommendation 1

The literature review (1) compared patients with and without preoperative MRI. Re-analysis reported in Section 4 reached the following conclusions:

Recurrence

• Use of MRI is associated with a reduction of recurrence of any type (hazard ratio [HR]=0.77, 95% confidence interval [CI]=0.65 to 0.90) [moderate level of certainty].

Section 2: Guideline - March 24, 2023

¹ Odds ratios (OR) or hazard ratios (HR) and 95% confidence intervals (CI) are from the forest plots. The absolute (percent) results are estimates of the magnitude of effect. GRADE uses terminology certainty of evidence, quality of evidence, strength of evidence, and confidence in the evidence interchangeably and assigns 4 categories (high, moderate, low, and very low) for each outcome based on the overall body of evidence. This evaluation includes assessment of risk of bias, inconsistency, indirectness, imprecision, size of effect (if large), and dose response (if present).

Approximate recurrence 8.2% versus 10.5%; 2.3% less (1% to 3.6% fewer). See Figure 4-5a, Table 4-4e, and Table 4-5e.

Contralateral Cancer

- Use of MRI is associated with an increase in detection of synchronous CBC (prior to initial surgery) (HR=2.52, 95% CI=1.75 to 3.62; HR>1 indicates increased detection with MRI) [moderate level of certainty]. Approximate synchronous CBC detection 4.7% versus 1.9%; 2.8% more (1.4% to 4.8% more). See Figure 4-4a and Tables 4-3, 4-4d, and 4-5d.
- Use of MRI is associated with a slight reduction in metachronous CBC (HR=0.71, 95% CI=0.59 to 0.85) [moderate level of certainty]. Approximate metachronous CBC 1.7% versus 2.4%; 0.7% fewer (0.4% to 1.0% fewer). See Figure 4-4b and Tables 4-3, 4-4d, and 4-5d.

Conversion Mastectomy

• Use of MRI is associated with a reduction in the rate of conversion mastectomy (odds ratio [OR]=0.76, 95% CI=0.58 to 0.99) [low level of certainty]. Approximate conversion mastectomy rate 5.5% versus 7.1%; 1.6% fewer (95% CI=0.1% to 2.9% fewer). See Figure 4-3f and Tables 4-3, 4-4c, and 4-5c.

Positive Margins

• Use of MRI reduced the rate of positive margins in studies with low or low-moderate risk of bias (OR=0.57, 95% CI=0.36 to 0.89) [moderate level of certainty]. Approximate rate of positive margins 6.5% versus 10.9%; 4.4% fewer (95% CI=1.1% to 6.7% fewer). See Tables 4-3, 4-4b and 4-5b.

Reoperations and Re-excisions

- Use of MRI is associated with a reduction in the rate of reoperation (OR=0.73, 95% CI=0.63 to 0.85) [low level of certainty]. Approximate rate of reoperation 14.4% versus 18.7%; 4.3% fewer (95% CI=2.3% to 6.0% fewer). See Figure 4-3b and Tables 4-3, 4-4c, and 4-5c.
- Use of MRI is associated with a reduction in the rate of re-excision (OR=0.63, 95% CI=0.45 to 0.89) [low level of certainty]. Approximate rate of re-excision 6.9% versus 10.5%; 3.6% fewer (95% CI=1.0% to 5.5% fewer). See Figure 4-3d and Tables 4-3, 4-4c, and 4-5c.

Mastectomy Rates

- Use of MRI is associated with an increase in the initial mastectomy rate in patients planned (prior to MRI) for BCS (OR=5.18, 95% CI=2.37 to 11.29) [very low level of certainty]. Approximate initial mastectomy rate 5.5% versus 1.1%; 4.4% more (95% CI=3.6% to 11.5% more). Use of MRI is associated with an increase in final mastectomy rate (OR=1.87, 95% CI=1.23 to 2.85) [very low level of certainty]. Approximate final mastectomy rate 14% versus 8%; 6% more (95% CI=1.7% to 11.9% more). See Figures 4-1a and 4-1c and Tables 4-3, 4-4a and 4-5a.
- Studies including all patients diagnosed with breast cancer (not restricted to predetermined BCS) showed that use of MRI is associated with an increase in initial mastectomy rate (OR=1.29, 95% CI=1.09 to 1.35) [low level of certainty]. Approximate initial mastectomy rate 38.0% versus 32.3%, 5.8% more (95% CI=1.9% to 9.9% more). Use of MRI is associated with an increase of final mastectomy rate (OR=1.19, 95% CI=1.06 to 1.33). Approximate final mastectomy rate 41.8% versus 37.6%, 4.2% more (95% CI=1.4% to 6.9% more). There was no difference in final mastectomy rate when the trials using

registry data were excluded (OR=0.98, 95% CI=0.82 to 1.17). See Figures 4-1a and 4-1c and Tables 4-3, 4-4a, and 4-5a.

Other supporting studies (not part of the meta-analysis)

- A meta-analysis of 22 studies by Brennan et al. found the incremental CBC detection rate over conventional imaging to be 4.1% (13). This is much higher than the cancer rate of 1.4% in the High Risk Ontario Breast Screening Program (14) in which MRI is routinely used.
- Two studies which characterized mammographically occult ipsilateral lesions (>2 cm away or in different quadrants than the index tumour) found that they were larger than the index lesion in approximately 20% of cases (15, 16). In the absence of MRI, such tumours, unless detected coincidentally during operation of the index tumour, would be untreated surgically.
- Guidelines by The Canadian Association of Radiologists (17), the European Society of Breast Imaging (EUSOBI) (18, 19), and Blue Shield of California/Blue Cross Blue Shield Association (20, 21) have similar recommendations.

Justification for Recommendation 1

- We consider the significant reduction in recurrence, probable improvement in diseasefree survival (DFS) and metachronous CBC, and reduction in reoperations (re-excisions and conversion mastectomies) evidence of benefit that outweighs the potential negative effects overall. This recommendation places higher value on treating cancer in a single operation and avoidance of recurrence than on avoidance of discomfort of MRI and potential additional biopsies.
- While absolute benefit is small for most outcomes and not always statistically significant, the trend is toward MRI being beneficial for each outcome, and therefore this consistency strengthens the conclusion that preoperative MRI has a positive impact in general.
- While MRI use is associated with an increase in mastectomy rate, reasons are likely to be multifactorial, including to encompass additional foci of cancer, lack of BCS/oncoplastic surgery expertise for more complex cases, and patient preferences. In retrospective studies (and some of the RCTs) MRI was used for clinical reasons that may not have been recorded or adjusted for but that could be related to mastectomy use. As mastectomy rates may vary by country, region, hospital, and surgeon, and due to patient factors such as age, relationship status, and race/ethnicity, the additional effect of MRI for mastectomy outcomes is difficult to assess.

Recommendation 2

Preoperative breast MRI *is recommended* in patients diagnosed with invasive lobular carcinoma (ILC) for whom additional information about disease extent could influence treatment. The decision of whether to conduct MRI should be made in consultation with the patient and must take into account the balance of benefits and risks and patient preferences.

Qualifying Statements for Recommendation 2

- Risks and benefits will vary depending on patient and disease characteristics.
- System issues such as MRI availability may result in treatment delays that may modify the decision.

Key Evidence for Recommendation 2

Evidence for Recommendation 1 would apply, in addition to stronger evidence specifically for ILC:

- Use of MRI is associated with a reduction in the rate of conversion mastectomy in patients with ILC (OR=0.38, 95% CI=0.25 to 0.56) [high certainty of evidence]. Approximate conversion mastectomy rate in ILC 5.9% versus 14.2%; 8.3% fewer (5.7% to 10.3% fewer).
- Use of MRI is associated with a reduction in the rate of positive margins in patients with ILC (OR=0.63, 95% CI=0.49 to 0.82) [moderate level of certainty]. Approximate rate of positive margins 18.9% versus 27.0%; 8.1% fewer (3.7% to 11.7%).
- Use of MRI is associated with a large reduction in the rate of reoperation in patients with ILC (OR=0.30, 95% CI=0.13 to 0.72) [moderate level of certainty]. Approximate rate of reoperation 12.3% versus 31.9%; 19.6% fewer (6.77% to 26.1% fewer).
- Lobbes et al (22) found MRI increased detection of synchronous CBC in ILC (OR=4.07, 95% CI=1.73 to 3.61, p<0.001) (HR>1 indicates increased detection with MRI).
- A review of the literature by Mann et al (23) found synchronous CBC detected by MRI in 7% of patients (95% CI=4% to 12%), and that the rate was almost twice as high as for invasive ductal carcinoma. The recommendation is consistent with guidelines by EUSOBI (19), the European Society of Breast Cancer Specialists (EUSOMA) (24), Institut national d'excellence en santé et en services sociaux (INESSS) (25), and The Royal College of Radiologists (London) (26).

Justification for Recommendation 2

• We consider the significant reduction in positive margins resulting in a large reduction in reoperations (including conversion mastectomy), in addition to the benefits in survival and recurrence for all patients (see Recommendation 1) to be evidence of benefit that outweighs the potential negative effects overall. This recommendation places higher value on treating cancer in a single operation and avoidance of recurrence than on avoidance of discomfort of MRI and potential additional biopsies. The benefit of MRI is consistent with results of studies which reported that compared to invasive ductal carcinoma, ILC has been found more difficult to detect by mammography, more likely multifocal, more often occurs with synchronous CBC, and has more involved margins after initial resection (27-32).

Recommendations related to MRI and treatment planning but without comparative studies in the Evidence Summary

Recommendation 3

Preoperative breast MRI *is recommended*, based on the opinion of the Working Group, in the following situations:

- f) To aid in surgical planning of BCS in patients with suspected or known multicentric or multifocal disease.
- g) To identify additional lesions in patients with dense breasts.
- h) To determine the presence of pectoralis major muscle/chest wall invasion in patients with posteriorly located tumours or when invasion of the pectoralis major muscle or chest wall is suspected.

- To aid in surgical planning for skin/nipple-sparing mastectomies or for autologous reconstruction, oncoplastic surgery, and BCS with suspected nipple/areolar involvement.
- j) Patients with familial/hereditary breast cancer but who have not had recent breast MRI as part of screening or diagnosis.

Qualifying Statements for Recommendation 3

Preoperative breast MRI is recommended in the above situations if additional information about disease extent could influence treatment. The decision of whether to conduct MRI should be made in consultation with the patient and must take into account the balance of benefits and risks and patient preferences.

Key Evidence and Justification for Recommendation 3

Comparative studies meeting the evidence review inclusion criteria were not found. These uses are recommended based on expert opinion of the authors, and are consistent with recommendations in other guidelines (19-21, 24-26, 33, 34). Some of these situations are implicit in Recommendation 1; however, the authors wanted to draw attention to these uses.

- a) Most studies in the literature review (1) either excluded multicentric and multifocal disease or included these in the list of factors used to adjust results in multivariate analysis, indicating these are known to influence outcomes, but with the result that we did not find direct comparison of outcomes according to MRI use. The presence of multicentric and multifocal disease increases complexity of surgical planning and in older guidelines was a contraindication to BCS. When the disease is well-characterized, possibility of BCS may be increased in some cases and ruled out in others, and likelihood of incidental finding during surgery decreased. Consensus of the authors is that the increased sensitivity of MRI justifies its use in suspected/known multicentric or multifocal disease if BCS is desired.
- b) Several studies mentioned in the literature review (1) reported that sensitivity of mammography decreases as breast density increases, while sensitivity of MRI is high and independent of breast density. GEMMA (Gadobutrol-Enhanced MR Mammography) trials studied MRI in patients with newly diagnosed and histologically proven breast cancer. In GEMMA1, MRI sensitivity was 83% (independent of density), while sensitivity of mammography decreased from 79% to 62% as breast density increased (35). Corresponding results in the GEMMA2 trial were 91% (independent of density) for MRI and 82% (low density) to 64% (high density) for mammography. The Ottawa study of preoperative MRI found additional lesions changing surgical management in 31% of patients with low density (fat density) and 62% with dense breasts (36). Screening studies reported similar variations in sensitivity of mammography with breast density. The Supplemental MRI Screening for Women with Extremely Dense Breast Tissue (DENSE trial) randomized 40,373 women with extremely dense breast tissue and normal screening mammography to either supplemental MRI or only mammography, and found MRI reduced interval cancers by 50% in those offered MRI, and 80% in those who agreed to have an MRI (37-39). A systematic review and meta-analysis (40) found breast density is one of the strongest risk factors for breast cancer.
- c) Tumours near the chest wall may invade the pectoralis major muscle or involve the chest wall and thus accurate knowledge of tumour extent will influence treatment planning. MRI has been found to have high sensitivity in detecting muscle or chest wall involvement (41-44).

- d) Standard BCS may lead to fair to poor esthetic and functional results (45) and more complex oncoplastic surgery or mastectomy may be more appropriate if the optimal tumour-to-breast ratio for each quadrant is exceeded. Breast MRI or other advanced imaging (e.g., positron emission tomography/computed tomography) may be a prerequisite for extreme oncoplasty (46). MRI is frequently used prior to nipple-sparing mastectomy, especially in the case of centrally located tumours (47-51). MRI may rule out nipple involvement such that 2 cm is no longer considered a minimum tumour-to-nipple distance; 5 mm (52) or 1 cm (53-58) may be sufficient.
- e) Hereditary cancer patients have a high risk of synchronous and metachronous CBC. A systematic review reported 10-year CBC rates of 25% to 31% for patients with germline mutations compared to 4% to 8% for sporadic cases (59).

Other Comments

Several other applications of breast MRI are generally accepted but outside the scope of the current work. This includes breast cancer screening, use prior to definitive diagnosis in cases with diagnostic uncertainty, occult breast cancer, or Paget disease of the breast. MRI or other advanced imaging may be used to localize the tumour prior to and following neoadjuvant therapy and to monitor response during treatment (17-21, 24, 26, 33, 60, 61).

TECHNICAL FACTORS FOR MRI USE

MRI is one of the most sensitive imaging techniques in detecting breast tumours, with the potential to be highly specific. Performance depends on the equipment and MRI techniques used and expertise of those conducting the analysis. The literature review (1) identified several technical documents and standards for MRI use. Guidance on performance of CE-MRI and biopsies by the Canadian Association of Radiologists (17), American College of Radiology (ACR) (61-72), EUSOBI (19, 73), and others may be useful; however, these were not critically reviewed or compared in this evidence summary. Several studies used technical standards for MRI set by the American College of Radiology Imaging Network (ACRIN) 6667 trial (74-77) and EUSOBI as well as the ACRIN 6698 trial for DWI (78).

Best practice is that additional suspicious lesions detected by preoperative MRI be biopsied or otherwise confirmed if they could alter surgical procedures. Sites performing MRI should have the capacity for MRI-directed biopsy. This minimizes the need for repeat MRIs and associated costs, delays due to transfer of care (ultimately resulting in delay to definitive treatment) (79), and risk of patients not receiving follow-up. Familiarity with the complete process may also result in better expertise in reading and interpreting MRI (80).

IMPLEMENTATION CONSIDERATIONS

In Ontario there are currently capacity constraints that affect the availability of MRI. Additional MRI use will add system pressures unless capacity issues are resolved and may increase treatment delays beyond what are considered acceptable in some cases. Availability/accessibility varies among regions.

Patient input indicated education on benefits and risks as outlined in Table 2-1 and subsequent shared decision-making is crucial. For patients expressing reluctance about MRI due to the equipment (e.g., claustrophobia and noise), discussion could include ways to make it more acceptable such as sedation or alternative MRI units (some MRI equipment may be larger). Local availability of breast MRI and projected surgical delays due to addition of preoperative MRI may be major issues in deciding whether MRI is used. Patients indicated that they would like to be aware of these issues and whether they were modifiable in their situation.

Abbreviated or Shortened MRI

Limited availability and high cost are in part due to the long time of a full MRI scan (30-45 min). Many studies have investigated whether scan time can be reduced without sacrificing sensitivity and specificity or loss of other information. As MRI has been found of benefit in screening women at high risk of cancer (81-83), as well as intermediate risk (2, 84, 85) including patients with dense breasts (37), the majority of evidence comes from screening studies or those enriched in cancerous lesions.

The first major study of abbreviated MRI (AB-MRI) in screening by Kuhl et al. was published in 2014 (86). Women at mildly to moderately increased risk of breast cancer with negative digital mammography underwent full diagnostic MRI (8 pulse sequences). For AB-MRI, only the first two sequences (precontrast and first postcontrast acquisition) were read. Acquisition time for AB-MRI sequences was 3 min, compared to 17 min for the full protocol. Additional cancer yield was 18.2/1000. Sensitivity was 100% and specificity was similar to the full protocol (94.3% vs. 93.9%). Based on this work, many other studies of AB-MRI have been conducted. Specificity was lower in some studies (though generally >80%), and variations in protocol including additional sequences have been investigated. Adding a T2-weighted sequence and having at least two post-contrast sequences does not increase the scan time by more than 3 to 4 min and allows improved specificity equivalent to the full protocol. Ultrafast MRI involving a fast post-contrast acquisition capturing the inflow of contrast agent and may be used on its own, or together with abbreviated MRI; in the latter case it adds information but does not take additional time (87). DWI has the advantage of not requiring contrast agent and provides additional functional information but has lower sensitivity. DWI may also be used in conjunction with AB-MRI. AB-MRI has been reported for over 5400 women in 21 studies published from 2014 to 2018 (88), with overall sensitivity of 94% and specificity of 90%. A later review identified 41 studies until 2020 involving 15,680 MRI examinations (89). There is not a common definition of AB-MRI, and it sometimes refers to just the precontrast and postcontrast sequence, sequences less than 7 to 10 min, or to any protocol that is significantly shorter than the standard (full) MRI protocol.

The ECOG-ACRIN EA1141 trial "Comparison of Abbreviated Breast MRI and Digital Breast Tomosynthesis in Breast Cancer Screening in Women With Dense Breasts" found a cancer detection rate of 15.2 per 1000 women with AB-MRI and 6.2 with digital breast tomosynthesis; corresponding sensitivity was 95.7% versus 39.1% (90, 91). A similar study in Korea conducted in women with a history of breast cancer found sensitivity of 100% for AB-MRI and 54.6% for digital breast tomosynthesis (92). Of more direct relevance to the current guideline, two studies used MRI after diagnosis to guide treatment. Girometti et al. used a 3-min AB-MRI in patients with biopsy-proven lesions to detect additional disease in staging (93). Institutional policy was to refer all women with histological diagnosis of breast cancer to staging MRI. There were 36 additional lesions (confirmed by pathology) in 87 patients. Four readers found a cancer detection rate for additional lesions of 88.9% to 94.4% using AB-MRI and 91.7% to 94.4% using full protocol MRI. Lee-Felker et al used MRI to determine extent of disease in diagnosed breast cancer (94). In their study of 81 patients, sensitivity was 99% and specificity 97% with AB-MRI sequences and 98% and 94% with full MRI. MRI detected eight additional cancers (8%) of which five were ipsilateral and three were contralateral. AB-MRI scan time was approximately 3.5 min, and a full scan was 16 to 17 min.

The ACR accreditation requirements for breast MRI include a precontrast sequence (T2 weighted/bright fluid series, multi-phase T1-weighted series, and pre-contrast T1; these may be separate or combined), and early postcontrast and delayed postcontrast T1-weighted sequences (95). Massachusetts General Hospital (Boston, Massachusetts) since 2016 has used a rapid abridged multiphase (RAMP) breast MRI protocol that met ACR requirements and has a scan time of 10 min (96).

In Ontario, use of the full diagnostic protocol is common and requires 30 to 45 min. Some cancer centres including those in Ottawa and London use a shortened protocol that requires a scan time of 12 min and meets Canadian Association of Radiologists (17) and Ontario Breast Screening Program guidelines.

GUIDELINE LIMITATIONS

This literature review referred to in this guideline included primarily retrospective studies that may have additional confounding factors for which adjustment was not made. While the benefits of MRI use in these studies are generally consistent, the magnitude of benefit is less certain due to differences in patient populations, study designs, and methods of adjustment for confounders. Comparative studies on use of MRI versus no MRI that met our inclusion criteria were not found for many of the subgroups of interest, including use of systemic therapy or radiotherapy. Cost analysis was outside the scope of this work.

FURTHER RESEARCH

Advances in contrast-enhanced MRI, as well as in complementary techniques such as DWI-MRI and growing expertise of those interpreting output, have improved the sensitivity and specificity of MRI in detecting lesions and reduced the proportion of lesions that require biopsy. Accelerated or abbreviated MRI techniques may significantly reduce the acquisition time and related costs without sacrificing performance in most cases; this is a topic of recent and ongoing clinical trials.

Preoperative Breast Magnetic Resonance Imaging Guideline

Section 3: Guideline Methods Overview

This section summarizes the methods used to create the guideline. For the systematic review, see Section 4.

THE PROGRAM IN EVIDENCE-BASED CARE

The Program in Evidence-Based Care (PEBC) is an initiative of the Ontario provincial cancer system, Ontario Health (Cancer Care Ontario) supported by the Ontario Ministry of Health (OMH). The PEBC mandate is to improve the lives of Ontarians affected by cancer through the development, dissemination, and evaluation of evidence-based products designed to facilitate clinical, planning, and policy decisions about cancer control. All work produced by the PEBC is editorially independent from the OMH.

The PEBC supports the work of Guideline Development Groups (GDGs) in the development of various PEBC products. The GDGs are composed of clinicians, other healthcare providers and decision makers, methodologists, and community representatives from across the province.

BACKGROUND

An evidence summary (1) was prepared to provide guidance on when to use preoperative MRI to inform the Breast Cancer Pathway Map (https://www.cancercareontario.ca/en/pathway-maps/breast-cancer). Based on the findings from the completed Evidence Summary, the primary goal of the Guideline is to translate the evidence into clinical guidance recommendations regarding when preoperative breast MRI should be considered. To aid in guideline development, further analysis and quality assessment of data was conducted (see Section 4).

GUIDELINE DEVELOPERS

This guideline was developed by the Preoperative Breast MRI Guideline Development Group (Appendix 1), which was convened at the request of the Cancer Imaging Program of OH (CCO) and Disease Pathway Management of OH (CCO).

The project was led by a small Working Group of the Preoperative Breast MRI Guideline Development Group, which was responsible for reviewing the evidence base, drafting the guideline recommendations, and responding to comments received during the document review process. The Working Group had expertise in radiology, surgery, medical oncology, and health research methodology. Other members of the Preoperative Breast MRI Guideline Development Group served as the Expert Panel and were responsible for the review and approval of the draft document produced by the Working Group. Conflict of interest declarations for all GDG members are summarized in Appendix 1 and were managed in accordance with the <u>PEBC Conflict of Interest Policy</u>.

GUIDELINE DEVELOPMENT METHODS

The PEBC produces evidence-based and evidence-informed guidance documents using the methods of the Practice Guidelines Development Cycle (97, 98). This process includes a systematic review, interpretation of the evidence and draft recommendations by the Working Group, internal review by content and methodology experts, and external review by Ontario clinicians and other stakeholders.

The PEBC uses the AGREE II framework (99) as a methodological strategy for guideline development. AGREE II is a 23-item validated tool that is designed to assess the methodological rigour and transparency of guideline development and to improve the completeness and transparency of reporting in practice guidelines.

The currency of each document is ensured through periodic review and evaluation of the scientific literature and, where appropriate, the addition of newer literature to the original evidence-base. This is described in the <u>PEBC Document Assessment and Review Protocol</u>. PEBC guideline recommendations are based on evidence of the magnitude of the desirable and undesirable effects of an intervention or accuracy of a test, and take into account the certainty of the evidence, the values of key stakeholders (e.g., patients, clinicians, policy makers), and the potential impact on equity, acceptability, and feasibility of implementation. A list of any implementation considerations (e.g., costs, human resources, and unique requirements for special or disadvantaged populations, dissemination issues) is outside of scope, but known issues are provided along with the recommendations for information purposes. PEBC guideline development methods are described in more detail in the <u>PEBC Handbook</u> and the <u>PEBC Methods Handbook</u>.

GUIDELINE REVIEW AND APPROVAL

Patient and Caregiver-Specific Consultation Group

Five people with personal experience with cancer (patients/survivors/caregivers) participated as Patient Consultation Group members. They reviewed copies of the draft recommendations and provided feedback on their comprehensibility, appropriateness, and feasibility to the Working Group's Health Research Methodologist. The Health Research Methodologist relayed the feedback to the Working Group for consideration.

Internal Review

Approval required that 75% of the content experts who comprised the GDG Expert Panel cast a vote indicating whether or not they approved the document, or abstained from voting for a specified reason, and of those that voted, 75% had to approve the document. In addition, the PEBC Report Approval Panel, a three-person panel with methodology expertise, had to unanimously approve the document. The Expert Panel and Report Approval Panel members could specify that approval was conditional, and that changes to the document were required.

External Review

Feedback on the approved draft guideline was obtained from content experts and the target users through two processes. Through the Targeted Peer Review, several individuals with content expertise were identified by the GDG and asked to review and provide feedback on the guideline document. Through Professional Consultation, relevant care providers and other potential users of the guideline were contacted and asked to provide feedback on the guideline recommendations through a brief online survey.

DISSEMINATION AND IMPLEMENTATION

The guideline will be published on the OH (CCO) website and may be submitted for publication to a peer-reviewed journal. The Professional Consultation of the External Review is intended to facilitate the dissemination of the guideline to Ontario practitioners. Section 1 of this guideline is a summary document to support the implementation of the guideline in practice. OH (CCO)-PEBC guidelines are routinely included in several international guideline databases including the CPAC Cancer Guidelines Database, the CMA/Joule CPG Infobase database, the ECRI Guidelines Trust, and the Guidelines International Network (GIN) Library.

ACKNOWLEDGEMENTS

The Preoperative Breast MRI Guideline Development Group would like to thank the following individuals for their assistance in developing this report:

- Michelle Ghert, Mona el Khoury, Renee Hanrahan, Donna Maziak, Sheila McNair, Amanda Roberts, Jonathan Sussman, Emily Vella, and Xiaomei Yao for providing feedback on draft versions.
- Sara Miller for copy editing.

We also acknowledge the work of Neety Panu, Christina Lacchetti, Karen Spithoff, Sarah Kellett, and Caroline Hamm in preparing an earlier unpublished review and guideline on this topic (3).

Preoperative Breast Magnetic Resonance Imaging Guideline

Section 4: Evidence Base

INTRODUCTION

The evidence base for this guideline is an evidence summary/systematic review (1) completed by OH (CCO) PEBC in December 2021. The systematic review should be consulted for further details of the methodology, data extracted from included studies, and discussion of results. Subsequent to the review, a targeted search was conducted in July 2022 to identify any additional publications related to the included RCTs and updates of any ongoing studies identified in the systematic review. Additional quality assessment and data analysis were conducted, and the GRADE approach was used to facilitate recommendation development.

RESEARCH OUESTION

In patients with newly diagnosed breast cancer, does additional information on extent of disease obtained by use of preoperative breast MRI after mammography and/or ultrasound (a) change the type or extent of surgery (BCS, unilateral or bilateral mastectomy), type or extent of radiation therapy, or use of adjuvant therapy; or (b) improve patient outcomes such as recurrence, DFS or event-free survival, distant metastasis-free survival, OS, rates of re-excision or re-operation, or quality of life?

TARGET POPULATION

Patients diagnosed with breast cancer for which additional information on disease location or extent obtained prior to surgery may influence staging, treatment, or prognosis. Individuals at high risk² of breast cancer who have already had MRI as part of screening are not included in the current review. It does not address patients diagnosed with breast cancer but without an identified cancerous lesion in the breast (occult breast cancer).

METHODS

The 2021 report details methods used in conducting the systematic review (1). To aid in recommendation development, the risk of bias was subsequently assessed per outcome for each study by GGF using methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions (100). The Cochrane risk-of-bias (RoB) tool (revised version RoB 2) for RCTs and ROBINS-I for non-RCTs are described in this handbook and other publications (101-103). The RoB 2 tool version is available as an MS Excel-based form; the 22 August 2019 version was used and can be downloaded from https://www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2. Risk of bias for RCTs was determined for categories of outcomes: mastectomy rates; resection margins; reoperations, re-excisions, conversion mastectomy; and recurrence and survival outcomes. Choices were low risk, some concerns, or high risk. For ROBINS-I the same categories of outcomes were used except that resection margins were combined with reoperations, re-excisions, and conversion mastectomy. Choices were low risk of bias (similar to a good RCT), moderate (good non-RCT but worse than good RCT), serious (important problems), critical (too problematic to be useful).

² For high-risk individuals, use of MRI together with mammography is the standard of care for screening in Ontario as part of the Ontario Breast Screening Program (see https://www.cancercareontario.ca/en/guidelines-advice/cancer-continuum/screening/breast-cancer-high-risk-women).

Forest plots had been created for data presentation in the evidence review using Review Manager 5.4 software (RevMan) provided by the Cochrane Collaboration (104). Those plots considered important in development of recommendations were revised. Additional sensitivity analysis was conducted excluding studies based on extraction of data from registries outside of individual institutions (e.g., regional, or country-wide databases) and excluding two RCTs with high risk of bias for non-mastectomy outcomes. Subgroup analysis was conducted for categories of in situ disease, invasive disease, and ILC; RCTs and non-RCTs; and subtypes of recurrence (local, locoregional, ipsilateral, or combination of these three subtypes, and distant recurrence).

The GRADE approach (see https://www.gradeworkinggroup.org/) was used to rate the overall quality of evidence for outcomes of mastectomy rates, positive margins, reoperations, re-excisions, conversion mastectomy, recurrence (and specific types of recurrence), DFS or recurrence-free survival (RFS), and OS. The GRADEPro guideline development tool (105) was used to determine the GRADE rating and present the results. A summary evaluation of risk of bias for each outcome and data from the forest plots was input, as well as a judgement for the other GRADE fields. As part of imprecision evaluation, the number of subjects for each outcome (optimal information size) was compared to a sample size calculation using the tool available at https://www.stat.ubc.ca/~rollin/stats/ssize/b2.html, using an alpha=0.05 and power of Studies not meeting this sample size were judged to have serious or very serious imprecision. A factor in "other considerations" is magnitude of effect; outcomes with a large effect of preoperative MRI (OR<0.5) or very large effect (OR<0.2) were upgraded by one or two levels, respectively. GRADEPro requires entry of the baseline event rates in order for it to calculate anticipated absolute effects. This was estimated from control data (no MRI) after excluding outliers that were much higher than the other studies. GRADE uses terminology "certainty of evidence", "quality of evidence" "strength of evidence" and "confidence in the evidence" interchangeably and assigns 4 categories (high, moderate, low, and very low) for each outcome based on the overall body of evidence (10-12). These reflect "the extent to which we are confident that an estimate of the effect is correct" or "the extent to which our confidence in an estimate of the effect is adequate to support a particular recommendation" (11).

RESULTS

A publication of recurrence and survival data for the POMB trial was recently published (106). At a median of 10 years of follow-up they reported the following results: DFS 85.5% versus 80.0% (p=0.099), OS 90.9% versus 88.6% (p=0.427), breast cancer-specific survival 92.3% versus 89.5% (p=0.321), locoregional recurrence 5.9% versus 8.6% (p=0.275), contralateral recurrence 0.9% versus 2.3%, distant recurrence 7.3% versus 11.8% (p=0.116), and any recurrence (locoregional + contralateral + distant combined) 11.8% versus 19.1% (p=0.048; for stage I-III subgroup p=0.057).

RoB is one component of the GRADE assessment. RoB for RCTs is illustrated in Table 4-1. RoB was high for the outcome of mastectomy rate for all RCTs. For other outcomes, the RoB was evaluated as high for the COMICE (107) and MONET trials (108). Table 4-2 shows evaluation for each component of bias assessment for non-RCTs, as well as the overall RoB for RCTs. For non-RCTs, we only included studies with equivalent groups (historical, propensity-score matching, multivariate analysis) and therefore RoB from confounding was rated as low in some studies and moderate in most of the others. Studies with high likelihood of confounding were not included according to the inclusion/exclusion criteria of the literature review. Trials using registry data had less information available and residual confounding was more likely. With the exception of two studies (22, 109), no MRI methodology was provided for studies using

registry data; classification bias existed except for the Lobbes study which used EUSOBI criteria and Vos which indicated use of dynamic contrast-enhanced MRI.

Forest plots were recreated (see Figures 4-1 to 4-5) with the following revisions from the initial evidence summary(1):

- Inclusion of the new POMB data (106).
- Removal of data from the MIPA trial because a new publication (110) indicated that it did not meet the review criteria.
- Removal of data from Sung et al, 2014 (111) as groups are not well matched/not equivalent.
- Removal of data from Wang et al, 2018 (112) as they reported subsequent mastectomy as a surrogate for recurrence, and breast cancer-specific survival but not OS or DFS. These outcomes are not equivalent to those in other trials.
- An abstract of the B-Smart trial (113) had been included only in the data tables; re-excision data was therefore added to the revised forest plots.
- For studies with both overall and subgroup data by stage/subtype (22, 109, 114), the previous forest plots had used only the subgroup data. Plots were redone to use the overall study data except when analyzing by subgroup by stage/subtype.
- It was previously overlooked that in one study (114) propensity-matching was used for most outcomes but not re-excision results; re-excision data for this study are no longer included in the plots.
- During risk of bias evaluation, it was noted that studies using registry data had less information available and residual confounding was more likely. With the exception of two studies (22, 109), no MRI methodology was provided for studies using registry data. Table 4-3 shows ORs overall and without registry studies.
- RoB was high for the COMICE (107) and MONET randomized trials (108). Table 4-3 shows ORs overall and without these two RCTs.
- For recurrence data, outcomes have been regrouped as locoregional (ipsilateral breast or regional lymph nodes), distant, or any recurrence (locoregional + distant, and sometimes metachronous CBC). Duplicate inclusion of studies in forest plots and duplicate inclusion in summary data due to inclusion in more than one category has been corrected.
- Contralateral data had been reported as a separate category as well as in recurrence. Duplication has been eliminated.
- For synchronous CBC, HRs are now reported so that HR>1 corresponds to an increase in CBC detection with use of MRI.
- For CBC, recurrence, and survival outcomes, most studies reported HR and therefore for these outcomes all ratios were converted to HR. For other outcomes, most studies reported OR and no change was made.

GRADE results are reported in the Summary of Findings (Table 4-4) and Grade Profiles (Table 4-5). Absolute effects are given for ease of interpretation; however, these should be considered as only rough approximations due to assumptions of a single average baseline risk for each outcome or subgroup instead of a range of risks for each study used in the multivariate analyses in determining ORs.

INTERPRETATION AND CONCLUSIONS

• Based on the data presented in the summary of findings and grade profiles from GRADEPro (see Tables 4-4 and 4-5), the conclusions below were reached. Uniform

wording as suggested by Santesso et al (12) has been used³. The forest plots (Figures 4-1 to 4-5) should be consulted for a comparison of outcomes for each study. ORs or HRs and 95% CIs are from the forest plots and are the main results used in interpreting the effect of preoperative MRI. The absolute (percent) results are for ease of interpretation and portray the magnitude of effect; however, the calculation of CIs for these absolute effects does not take into account that baseline risks are only approximations. MRI probably increases OS slightly (HR=0.89, 95% CI=0.74 to 1.07) [moderate level of certainty]. Approximate OS 93.8% versus 93.0%; 0.7% greater survival (0.5% less to 1.8% more).

- MRI probably increases RFS/DFS (HR=0.77, 95% CI=0.53 to 1.12) [moderate level of certainty]. Approximate RFS 91.6% versus 89.3%; 2.4% greater DFS (1.2% less to 4.9% more).
- MRI probably reduces recurrence of any type (HR=0.77, 95% CI=0.65 to 0.90) [moderate level of certainty]. Approximate recurrence 8.2% versus 10.5%; 2.3% less (1% to 3.6% fewer).
 - MRI may reduce locoregional recurrence slightly (HR=0.85, 95% CI=0.69 to 1.04) [low level of certainty]. Approximate locoregional recurrence 4.8% versus 5.7%; 0.8% fewer (1.7% fewer to 0.2% more).
 - MRI may reduce distant recurrence slightly (HR=0.77, 95% CI=0.56 to 1.07) [low level of certainty]. Approximate distant recurrence 4.7% versus 6.1% (1.4% fewer (2.6% fewer to 0.4% more).
- MRI increases detection of synchronous CBC (prior to initial surgery) (HR=2.52, 95% CI=1.75 to 3.62; HR>1 indicates increased detection with MRI) [moderate level of certainty]. Approximate synchronous CBC detection 4.7% versus 1.9%; 2.8% more (1.4% to 4.8% more). A meta-analysis of 22 studies found the incremental cancer detection rate in the contralateral breast over conventional imaging to be 4.1% (13).
- MRI probably reduces metachronous CBC slightly (HR=0.71, 95% CI=0.59 to 0.85) [moderate level of certainty]. Approximate metachronous CBC 1.7% versus 2.4%; 0.7% fewer (0.4% to 1.0% fewer).
- MRI may reduce the rate of conversion mastectomy (OR=0.76, 95% CI=0.58 to 0.99) [low level of certainty]. Approximate conversion mastectomy rate 5.5% versus 7.1%; 1.6% fewer (95% CI=0.1% to 2.9% fewer).
 - MRI reduces the rate of conversion mastectomy in patients with ILC (OR=0.38, 95% CI=0.25 to 0.56) [high certainty of evidence]. Approximate conversion

_

³ For MRI as the intervention, each recommendation is of the form *MRI reduces/increases outcome*, or *MRI results in a reduction/increase in outcome*. The modifier before reduce/increase (or reduction/increase) will depend on certainty of evidence. "May" or "evidence suggests" indicates low certainty evidence while "likely" or "probably" indicate moderate certainty evidence; for high certainty a modifier can be omitted (e.g., X results in a large reduction...). Magnitude of effect is divided into four categories with the modifier either before reduction/increase or after reduces/increases outcome: large effect (large reduction/increase in outcome); moderate effect (this is the default, no descriptor is needed); small important effect, (slight reduction/increase, or increases slightly); or trivial, small unimportant effect, or no effect. For very low certainty of evidence, this can be stated directly as "the evidence is very uncertain about the effect..."

mastectomy rate in ILC 5.9% versus 14.2%; 8.3% fewer (95% CI=5.7% to 10.3% fewer).

- MRI may reduce the rate of positive margins (OR=0.89, 95% CI=0.74 to 1.06) [low level of certainty]. Approximate rate of positive margins 16.5% versus 18.2%; 1.7% fewer (95% CI=4.1% fewer to 0.9% more).
 - MRI probably reduces the rate of positive margins in studies with low or low-moderate RoB (OR=0.57, 95% CI=0.36 to 0.89) [moderate level of certainty].
 Approximate rate of positive margins 6.5% versus 10.9%; 4.4% fewer (95% CI=1.1% to 6.7% fewer).
 - MRI probably reduces the rate of positive margins in patients with ILC (OR=0.63, 95% CI=0.49 to 0.82) [moderate level of certainty]. Approximate rate of positive margins 18.9% versus 27.0%; 8.1% fewer (95% CI=3.7% to 11.7%).
- MRI may reduce the rate of reoperation (OR=0.73, 95% CI=0.63 to 0.85) [low level of certainty]. Approximate rate of reoperation 14.4% versus 18.7%; 4.3% fewer (95% CI=2.3% to 6.0% fewer).
 - MRI probably results in a large reduction in the rate of reoperation in patients with ILC (OR=0.30, 95% CI=0.13 to 0.72) [moderate level of certainty]. Approximate rate of reoperation 12.3% versus 31.9%; 19.6% fewer (95% CI=6.77% to 26.1% fewer).
- MRI may reduce the rate of re-excision (OR=0.63, 95% CI=0.45 to 0.89) [low level of certainty]. Approximate rate of re-excision 6.9% versus 10.5%; 3.6% fewer (95% CI=1.0% to 5.5% fewer).
- The evidence is uncertain about the effect of MRI on initial mastectomy rate (OR=1.42, 95% CI=1.19 to 1.69) [very low level of certainty]. Approximate rate of initial mastectomy 34.6% versus 27.1%; 7.5% more (3.6% more to 11.5% more).
 - o In studies restricted to BCS candidates, the evidence is uncertain about the effect of MRI on initial mastectomy rate (OR=5.18, 95% CI=2.37 to 11.29) [very low level of certainty]. Approximate rate of initial mastectomy 5.5% versus 1.1%; 4.4% more (95% CI=1.5% to 10.2% more).
 - o In studies not restricted to type of surgery (determined prior to MRI), MRI may increase the initial mastectomy rate (OR=1.29, 95% CI=1.09 to 1.53) [low level of certainty]. Approximate rate of initial mastectomy 38.0% versus 32.3%; 5.8% more (95% CI=1.9% to 9.9% more).
- The evidence is uncertain about the effect of MRI on final mastectomy rate (OR=1.24, 95% CI=1.11 to 1.39) [very low level of certainty]. Approximate rate of final mastectomy was 37.7% versus 32.8%; 4.9% more (95% CI=2.3% to 7.6% more).
 - o In the subset of studies for which registry data was excluded (studies not restricted to initial BCS determination), MRI probably results in little to no difference in final mastectomy rates (OR=0.98, 95% CI=0.82 to 1.17).

As seen in the forest plots and the above summary, the evidence for benefit of preoperative MRI is stronger for ILC than for the overall data. This is consistent with results of studies that reported that, compared to invasive ductal carcinoma, ILC has been found more difficult to detect by mammography, more likely multifocal, more likely to have synchronous CBC, and with a higher rate of involved margins after initial resection (27-32). There was insufficient information to report on other subtypes of cancer separately.

The summary indicates a benefit of MRI in reducing positive margins and reoperations. These outcomes were measured in a large number of studies and with data available for most patients. Included studies also indicate an increase in synchronous CBC and corresponding decrease in metachronous CBC; this is consistent with more rigorous studies designed specifically to investigate CBC (see systematic review). MRI resulted in a decrease in rates of recurrence of any type. Subtype of recurrence was not reported consistently among the studies and therefore subgroup information was limited and therefore less likely to be statistically significant due to low number of participants and events for each outcome. Due to the long follow-up required, potential to retreat patients upon recurrence, and generally high survival in early breast cancer, survival outcomes are less sensitive to interventions than the other outcomes. Overall survival results were only available from five studies, of which four suggest there may be a small (not statistically significant) OS benefit of MRI; the combined data for OS were similar with and without MRI (OR=0.90, 95% CI=0.75 to 1.09). RFS or DFS was also reported in a small number of studies and with lower number of events than for short-term outcomes that could be measured in all patients. As RFS or DFS includes a component of recurrence, these results are similar to recurrence results.

While degree of benefit appears small for most outcomes and not always statistically significant, for all outcomes (except perhaps mastectomy rates, see evidence summary for a discussion of this) the trend is towards MRI being beneficial for each outcome, and therefore this consistency strengthens the conclusion that preoperative MRI has a positive impact in general. It is recognized that this may be higher for patients with certain characteristics such as high breast density or risk factors for (or diagnosis of) multifocal or multicentric cancer and may be lower for patients with a single small well-defined lesion and no other risk factors. While these factors are of interest and are briefly discussed in the literature review, data were not available for them in the comparative studies meeting the review inclusion criteria.

Table 4-1. Risk of bias for RCTs.

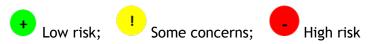
Table 4-1a. Risk of bias using ROB2 for mastectomy rates.

Unique ID	Study ID	Experimental	Comparator	<u>Outcome</u>	Weight	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>	<u>D5</u>	<u>Overall</u>
ICRIS	Balleyguier, 2019	MRI in BCS	no MRI	Mastectomy rate	14.8	-	!	+	+	+	-
Turku	Bruck, 2018	MRI in BCS	no MRI	Mastectomy rate	2.3	-	+	+	+	+	-
Breast-MRI	Mota, 2019	MRI in BCS	no MRI	Mastectomy rate	3.9	-	!	+	+	!	-
COMICE	Turnbull, 2010	MRI in BCS	no MRI	Mastectomy rate	21.9	-	-	+	-	+	-
POMB	Gonzalez, 2014	MRI	no MRI	Mastectomy rate	35.2	-	-	+	+	+	-
MONET	Peters, 2011	MRI	no MRI	Mastectomy rate	21.9			!	+	!	-

D1 - Randomization process; D2 - Deviations from the intended interventions; D3 - Missing outcome data; D4 - Measurement of the outcome; D5 - Selection of the reported result; ; BCS, breast conserving surgery; MRI, magnetic resonance imaging; RCT, randomized controlled trial; ROB, risk of bias.

Table 4-1b. Risk of bias using ROB2 for positive resection margins.

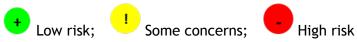
Unique ID	Study ID	Experimental	Comparator	Outcome	Weight	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>	<u>D5</u>	Overall
COMICE	Turnbull, 2010	MRI in BCS	no MRI	Margins	100	!		+		+	-



D1 - Randomization process; D2 - Deviations from the intended interventions; D3 - Missing outcome data; D4 - Measurement of the outcome; D5 - Selection of the reported result; BCS, breast conserving surgery; MRI, magnetic resonance imaging; RCT, randomized controlled trial; ROB, risk of bias

Table 4-1c. Risk of bias using ROB2 for reoperations, re-excisions, and conversion mastectomy.

Unique ID	Study ID	Experimental	Comparator	<u>Outcome</u>	Weight	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>	<u>D5</u>	<u>Overall</u>
IRCIS	Balleyguier, 2019	MRI in BCS	no MRI	Reoperations*	20.5	!	!	+	+	+	!
Turku	Bruck, 2018	MRI in BCS	no MRI	Reoperations*	7.8	+	+	+	+	+	+
Breast-MRI	Mota, 2019	MRI in BCS	no MRI	Reoperations*	13.7	!	!	+	+	-	!
COMICE	Turnbull, 2010	MRI in BCS	no MRI	Reoperations*	29.5	!	-	+	•	+	-
POMB	Gonzalez, 2014	MRI	no MRI	Reoperations*	13.3	!	!	+	+	+	!
Monet	Peters, 2011	MRI	no MRI	Reoperations*	12.4	-	-	!	+	!	-
B-SMART	Rahman, 2012	MRI	no MRI	Re-excisions	4.1	+	!	+	+	!	!


^{*}Reoperations, re-excisions, and conversion mastectomy

D1 - Randomization process; D2 - Deviations from the intended interventions; D3 - Missing outcome data; D4 - Measurement of the outcome; D5 - Selection of the reported result; BCS, breast conserving surgery; MRI, magnetic resonance imaging; RCT, randomized controlled trial; ROB, risk of bias

Table 4-1d. Risk of bias using ROB2 for recurrence and survival outcomes.

Unique ID	Study ID	Experimental	Comparator	Outcome	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>	<u>D5</u>	Overall
Turku	Bruck, 2018	MRI in BCS	no MRI	Distant recurrence	+	+	+	+	+	+
Breast- MRI	Mota, 2019	MRI in BCS	no MRI	Local recurrence, distant recurrence, overall survival	!	!	+	+	!	!
РОМВ	Gonzalez, 2014, 2021	MRI	no MRI	Locoregional recurrence, distant recurrence, disease-free survival, overall survival	!	!	+	+	+	!

D1 - Randomization process; D2 - Deviations from the intended interventions; D3 - Missing outcome data; D4 - Measurement of the outcome; D5 - Selection of the reported result; BCS, breast conserving surgery; MRI, magnetic resonance imaging; RCT, randomized controlled trial; ROB, risk of bias

Table 4-2. Risk of bias for included studies.⁴

Table 4-2a. Mastectomy rates - Patient population not defined by type of surgery planned before MRI.

Study name	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
In situ or DCIS									
Lebanon, NH	Davis, 2012 (115)	Low- moderate	Low	Low	Low	Low	Low	Low	Low- moderate
Netherlands Cancer Registry	Keymeulen, 2019 (116)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
University of Ulsan College of Medicine, Gangneung, Korea	Yoon, 2020 (117)	Low	Low	Low	Low	Low	Low	Low	Low
Eindhoven Cancer Registry	Vos, 2015 (109)	Serious	Low	Moderate	Low	Low	Low	Low	Serious
In situ and invasive									
POMB (RCT)	Gonzalez, 2014 (118)								High
Monet (RCT)	Peters, 2011 (108)								High
Mayo Clinic, Rochester	Katipamula, 2009 (119)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Magee-Womens Hospital - tumour registry	Sorbero, 2009 (120)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
4 registries of BCSC (USA)	Onega, 2017 (121)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate

⁴ Evaluation of RCTs is reported in Table 4-1. These studies have been included in Table 4-2 for comparison, however only the overall evaluation is provided here, and other columns are blank and shaded .

Study name	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
SEER-Medicare database	Ozanne, 2017 (122)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
registry									
4 registries of BCSC (USA)	Goodrich, 2016 (123)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Germany	Heil, 2013 (124)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
registry									
University of Ulsan College of Medicine, Seoul, South Korea	Choi, 2017 (125)	Low	Low	Low	Low	Low	Low	Low	Low
Changhua Christian Hospital	Lai, 2016 (126)	Low- moderate	Low	Moderate	Low	Low	Low	Low	Low- moderate
Mercy Hospital, Oklahoma City	Hollingsworth, 2008 (127) & 2015 (80)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Single institution in USA	Grady, 2012 (128)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Invasive									
NCCN centres 2000-2009	Luis, 2015 (129) [abstract]	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
McGill University	Parsyan, 2016 (130)	Moderate- serious	Low	Low	Low	Low	Low	Low	Moderate- serious
Administrative data in Ontario registry	Arnaout, 2015 (131)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Memorial Sloan- Kettering	Kapoor, 2013 (132)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate

Study name	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
SEER-Medicare database registry	Killelea, 2013 (133)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Eindhoven Cancer Registry	Vos, 2015 (109)	Moderate- serious	Low	Moderate	Low	Low	Low	Low	Moderate- serious
Netherlands Cancer Registry	Vriens, 2017 (134)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Netherlands Cancer Registry	Lobbes, 2017 (22)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
SEER-Medicare linked dataset	Fortune-Greeley, 2014 (114)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
registry									
ILC									
Radboud University Nijmegen	Mann, 2010 (135)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Seoul, Korea	Ha, 2018 (136) Overlaps with pts in Ha, 2019 (137)	Low	Low	Low	Low	Low	Low	Low	Low

Abbreviations: BCSC, Breast Cancer Surveillance Consortium; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; NCCN, National Comprehensive Cancer Network; RCT, randomized controlled trial; SEER, Surveillance, Epidemiology, and End Results Program (National Cancer Institute, USA)

Table 4-2b. Mastectomy outcome in studies with only breast conserving surgery candidates.

Study name or location	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
IRCIS BCS-DCIS: RCT	Balleyguier, 2019 (138)								High
BREAST-MRI BCS - in situ or invasive: RCT	Mota, 2019 (139) [Abstract]								High
COMICE BCS - in situ or invasive: RCT	Turnbull, 2010 (107, 140)								High
Turku University Hospital BCS- invasive: RCT	Bruck, 2018 (141)								High
Breast Cancer Surgical Outcomes (BRCASO) database 2003-2008	Feigelson, 2013 (142)	High	Low	Moderate	Low	Low	Low	Low	High
Registry data									

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Table 4-2c. Positive margins, reoperation, re-excision, conversion to mastectomy.

Study name or location	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
In situ, DCIS								l	
Lebanon, NH	Davis, 2012 (115)	Low- moderate	Low	Low	Low	Low	Low	Low	Low- moderate
Netherlands Cancer Registry	Keymeulen, 2019 (116)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
University of Ulsan College of Medicine	Yoon, 2020 (117)	Low	Low	Low	Low	Low	Low	Low	Low
DCIS - BCS planned									
IRCIS (RCT)	Balleyguier, 2019 (138)								Some concerns
In situ or invasive									
POMB (RCT)	Gonzalez, 2014 (118)								Some concerns
Monet (RCT)	Peters, 2011 (108)								High
SEER-Medicare database	Wang, 2013 (143)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Mercy Hospital, Oklahoma City	Hollingsworth, 2008 (127)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
	Hollingsworth, 2015 (80)								
Single institution in USA	Grady, 2012 (128)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
University of Ulsan College of Medicine, Seoul, South Korea	Choi, 2017 (125)	Low	Low	Low	Low	Low	Low	Low	Low
Changhua Christian Hospital	Lai, 2016 (126)	Low- moderate	Low	Moderate	Low	Low	Low	Low	Low- moderate

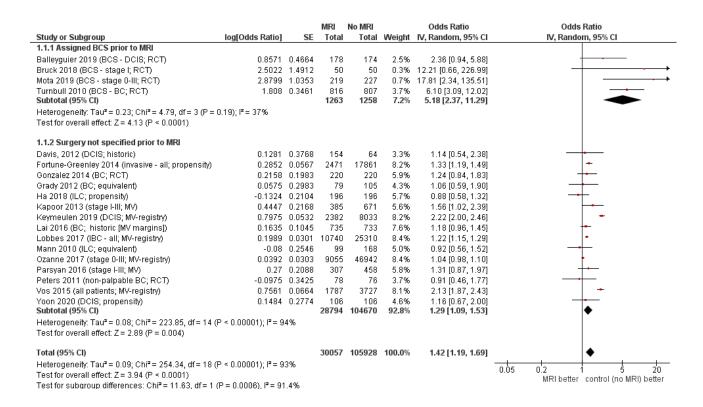
Study name or location	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
SEER-Medicare database	Ozanne, 2017 (122)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Eindhoven Cancer Registry, The Netherlands	Vos, 2015 (109)	Moderate- serious	Low	Moderate	Low	Low	Low	Low	Moderate- serious
In situ or invasive - BC	S only					•			
BREAST-MRI	Mota, 2019 (139) [Abstract]								Some concerns
COMICE	Turnbull, 2010 (107, 140)								High
Memorial Sloan Kettering Cancer Center, New York	Sung, 2014 (111)	Low	Low	Low	Low	Low	Low	Low	Low
Lynn Sage Comprehensive Breast Center	Zeng, 2020 (144)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Rotterdam, The Netherlands	Obdeijn, 2013 (145)	Low- moderate	Low	Low	Low	Low	Low	Low	Low- moderate
Invasive									
Breast Cancer Treatment Disparity Study in New Jersey State Cancer Registry	Chandwani, 2014 (146)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
SEER-Medicare linked dataset	Fortune- Greeley, 2014 (114)	Low- moderate	Low	Moderate	Low	Low	Low	Low	Moderate
McGill University Health Centre	Parsyan, 2016 (130)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Memorial Sloan- Kettering	Kapoor, 2013 (132)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate

Study name or location	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
Netherlands Cancer Registry	Vriens, 2017 (134)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Netherlands Cancer Registry	Lobbes, 2017 (22)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
University of Pennsylvania	Burkbauer, 2020 (147) [abstract]	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Invasive - BCS					<u>'</u>				
Turku University Hospital,	Bruck, 2018 (141)								Low
ILC									
Radboud University Nijmegen Medical Centre (RUNMC)	Mann, 2010 (135)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Seoul, Korea	Ha, 2018 (136)	Low	Low	Low	Low	Low	Low	Low	Low
	Overlaps with pts in Ha, 2019 (137)								
Ongoing Trials					L				
B-SMART (terminated)	Rahman, 2012 (113) [Abstract]								Some concerns

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial; SEER, Surveillance, Epidemiology, and End Results Program (National Cancer Institute, USA)

Table 4-2d. Contralateral breast cancer, recurrence, and survival.

Study name or location	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
DCIS - all surgeries							<u> </u>		
SEER-Medicare dataset	Wang, 2016 (148)	Moderate	Low	Moderate	Low	Low	Low	Low	Low- moderate
DCIS - BCS planned			1						
Memorial Sloan- Kettering Cancer	Pilewskie, 2014 (149)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
In situ or invasive- all	surgeries								
University of Ulsan College of Medicine, Seoul, South Korea	Choi, 2017 (125)	Low	Low	Low	Low	Low	Low	Low	Low
Seoul National University College of Medicine	Kim, 2013 (150)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
POMB	Gonzalez, 2014 (118); Gonzalez, 2021 (106)								Some concerns
In situ or invasive - Bo	CS only								
Enterprise Data Warehouse of Northwestern Medicine, Chicago	Amin, 2015 (151) [abstract]	Low-moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Samsung Medical Center	Ko, 2013 (152)	Low-moderate	Low	Low	Low	Low	Low	Low	Low- moderate
Dartmouth Hitchcock Medical Center	Hill, 2017 (153)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Memorial Sloan Kettering Cancer Center, New York	Sung, 2014 (111)	Low	Low	Low	Low	Low	Low	Low	Low


Study name or location	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
Lynn Sage Comprehensive Breast Center	Zeng, 2020 (144)	Low	Low	Moderate	Low	Low	Low	Low	Moderate
Invasive			•						•
Seoul National University Hospital, Seoul, Korea	Bae, 2016 (154)	Low	Low	Low	Low	Low	Low	Low	Low
Netherlands Cancer Registry	Lobbes, 2017 (22)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Netherlands Cancer Registry	Van Nijnatten, 2020 (155)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Netherlands Cancer Registry	Vriens, 2017 (134)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
SEER-Medicare dataset	Wang, 2016 (156)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Invasive - BCS only									
Princess Margaret Hospital, Toronto	Hwang, 2009 (157); Gervais, 2017 (158)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Yonsei University Hospital, Seoul, Korea	Ryu, 2016 (159)	Moderate	Low	Low	Low	Low	Low	Low	Moderate
SEER-Medicare dataset	Wang, 2018 (112)	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate
Registry									
Invasive Ductal Carcin	noma - BCS only								
Turku University Hospital	Bruck, 2018 (141)								Low
ILC									
Seoul, Korea	Ha, 2018 (136)	Low	Low	Low	Low	Low	Low	Low	Low

Study name or location	Author and source	Confounding	Selection bias	Classification bias	Departure from interventions	Missing Data	Measurement of outcomes	Selection of results to report	Overall
	Overlaps with pts in Ha, 2019 (137)								
Ongoing Trials									
BREAST-MRI	Mota, 2019 (139) [Abstract] Interim analysis for recurrence; final results not available								High (interim data, abstract)

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial; SEER, Surveillance, Epidemiology, and End Results Program (National Cancer Institute, USA)

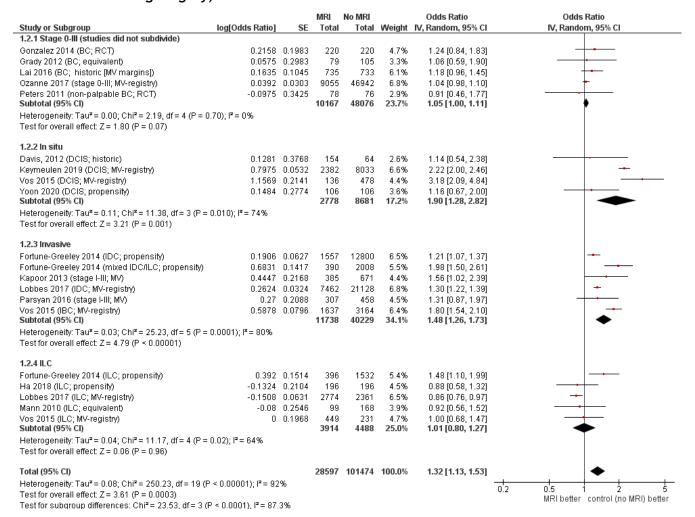

Figure 4-1. Forest plots for mastectomy rates.

Figure 4-1a. Initial mastectomy rate, subdivided by studies where patients were restricted to those assigned to breast conserving surgery prior to MRI or all preoperative patients were allowed.

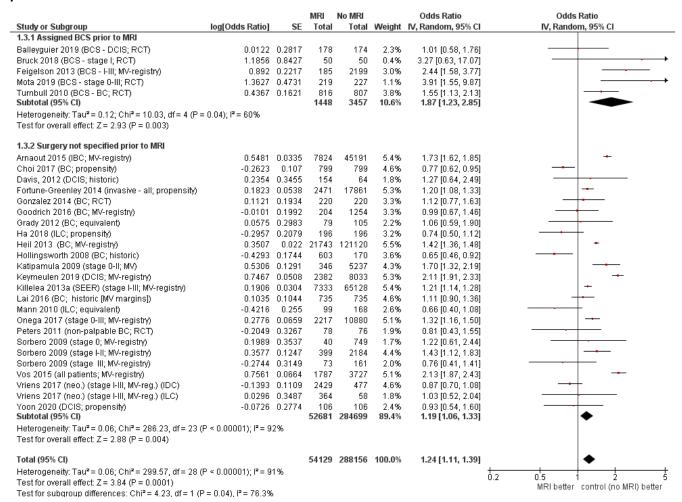

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-1b. Initial mastectomy rate by cancer subtype/stage (excluding studies restricted to breast conserving surgery).

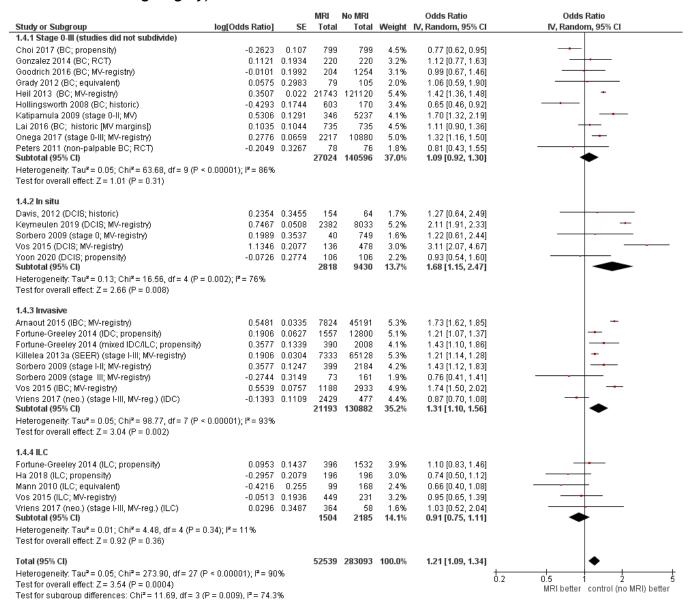

Abbreviations: BCS, breast conserving surgery; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-1c. Final (overall) mastectomy rate, subdivided by studies where patients were restricted to those assigned to breast conserving surgery prior to MRI or all preoperative patients were allowed.

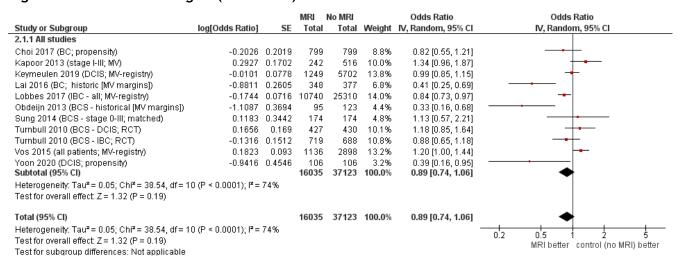

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial; SEER, Surveillance, Epidemiology, and End Results Program (National Cancer Institute, USA)

Figure 4-1d. Final mastectomy rate by cancer subtype/stage (excluding studies restricted to breast conserving surgery).

Abbreviations: DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial; SEER, Surveillance, Epidemiology, and End Results Program (National Cancer Institute, USA)

Figure 4-2. Forest plots for positive margins Figure 4-2a. Positive margins (all studies).

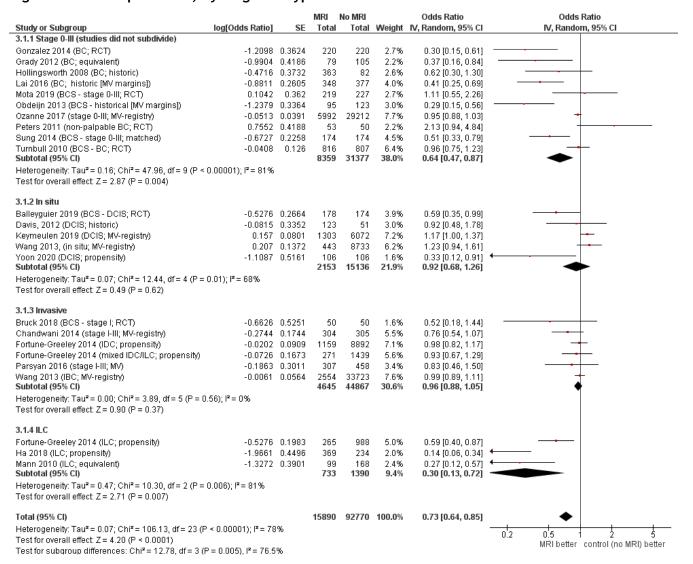

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; IBC, inflammatory breast cancer; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-2b. Positive margins by cancer stage/subtype.

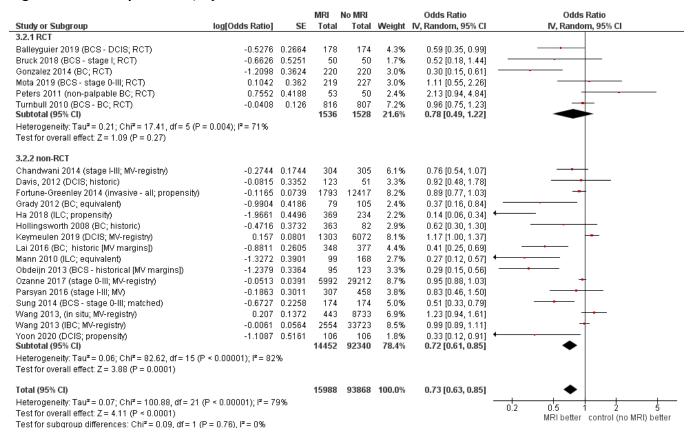

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-3. Forest plots for additional surgery. Figure 4-3a. Reoperations, by stage/subtype

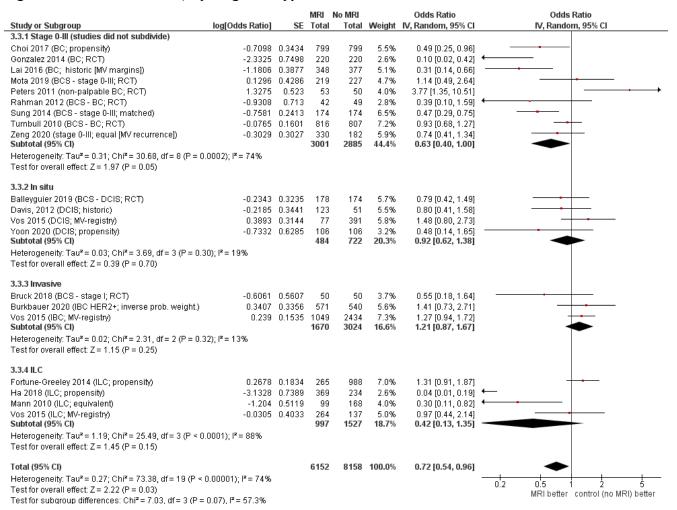

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-3b. Reoperations, by RCT or non-RCT studies

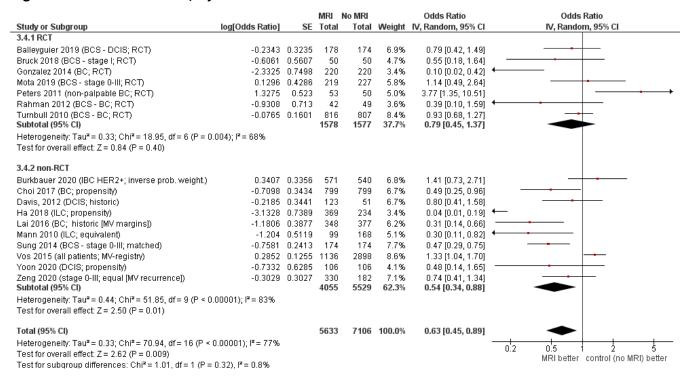

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-3c. Re-excisions, by stage/subtype.

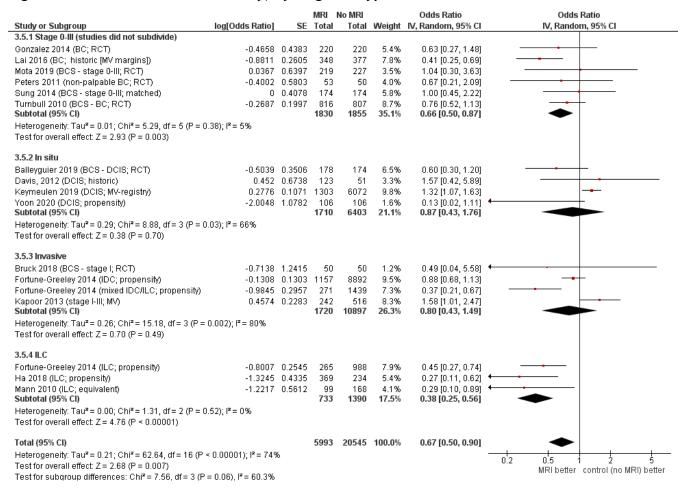

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; IBC, inflammatory breast cancer; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-3d. Re-excisions, by RCT or non-RCT studies

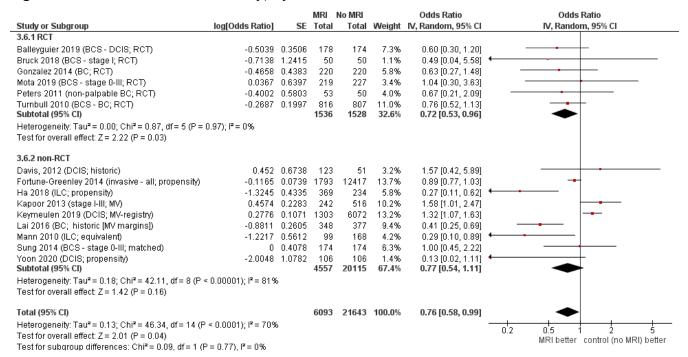
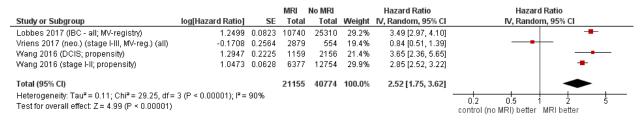

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; IBC, inflammatory breast cancer; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-3e. Conversion mastectomy, by stage/subtype.

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial


Figure 4-3f. Conversion mastectomy, by RCT or non-RCT.

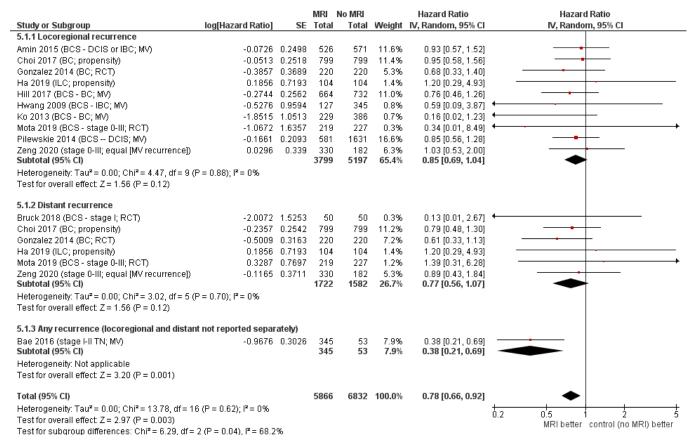
Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-4. Forest plots for contralateral breast cancer.

Figure 4-4a. Synchronous contralateral breast cancer.

Abbreviations: DCIS, ductal carcinoma in situ; IBC, inflammatory breast carcinoma; MRI, magnetic resonance imaging

Figure 4-4b. Metachronous contralateral breast cancer.


			MRI	No MRI		Hazard Ratio	Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Amin 2015 (BCS - DCIS or IBC; MV)	0.1989	0.3883	526	571	6.0%	1.22 [0.57, 2.61]		
Choi 2017 (BC; propensity)	-0.2877	0.4036	799	799	5.6%	0.75 [0.34, 1.65]		
Gonzalez 2014 (BC; RCT)	-0.9301	0.8422	220	220	1.3%	0.39 [0.08, 2.06]		
Ha 2019 (ILC; propensity)	-0.0566	0.9494	104	104	1.0%	0.94 [0.15, 6.08]	-	
Kim 2013 (BC; MV)	-0.9943	0.4607	1771	1323	4.3%	0.37 [0.15, 0.91]		
Pilewskie 2014 (BCS DCIS; MV)	-0.4081	0.2539	581	1631	14.1%	0.66 [0.40, 1.09]		
Wang 2016 (DCIS; propensity)	-0.1054	0.2799	1159	2156	11.6%	0.90 [0.52, 1.56]		
Wang 2016 (stage I-II; propensity)	-0.3857	0.1272	6377	12754	56.1%	0.68 [0.53, 0.87]		
Total (95% CI)			11537	19558	100.0%	0.71 [0.59, 0.85]	•	
Heterogeneity: Tau² = 0.00; Chi² = 5.4	4, df = 7 (P = 0.61); l ²	= 0%					0.2 0.5 1 2	
Test for overall effect: $Z = 3.62$ (P = 0.0	1003)						MRI better control (no MRI)	better

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

ι

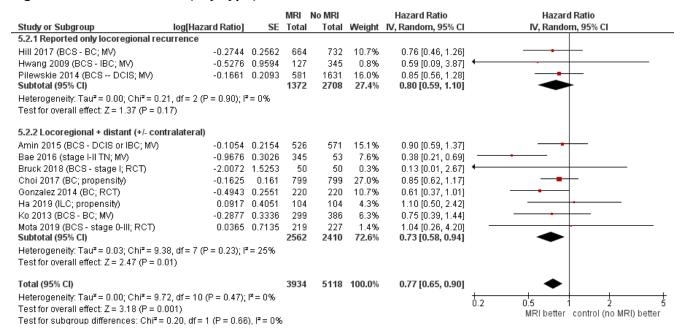

Figure 4-5. Forest plots for survival or recurrence.

Figure 4-5a. Recurrence by recurrence type reported.

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; IBC, inflammatory breast cancer; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-5b. Recurrence (any type)

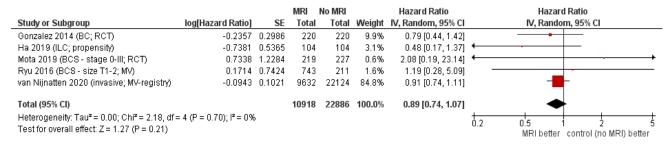

Abbreviations: BCS, breast conserving surgery; DCIS, ductal carcinoma in situ; IBC, inflammatory breast carcinoma; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-5c. Recurrence-free survival/disease-free survival.

			MRI	No MRI		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Bae 2016 (stage I-II TN; MV)	-1.0573	0.3657	345	53	15.2%	0.35 [0.17, 0.71]	-
Gonzalez 2014 (BC; RCT)	-0.3857	0.2221	220	220	23.7%	0.68 [0.44, 1.05]	
Ha 2019 (ILC; propensity)	-0.1948	0.3568	104	104	15.6%	0.82 [0.41, 1.66]	
Mota 2019 (BCS - stage 0-III; RCT)	0.2237	0.6131	219	227	7.5%	1.25 [0.38, 4.16]	
Ryu 2016 (BCS - size T1-2; MV)	-0.2877	0.4557	743	211	11.5%	0.75 [0.31, 1.83]	
van Nijnatten 2020 (invasive; MV-registry)	0.1484	0.1832	9632	22124	26.5%	1.16 [0.81, 1.66]	
Total (95% CI)			11263	22939	100.0%	0.77 [0.53, 1.12]	-
Heterogeneity: Tau ² = 0.10; Chi ² = 10.31, dr	f = 5 (P = 0.07); P = 5	2%					t t t
Test for overall effect: Z = 1.38 (P = 0.17)							0.2 0.5 1 2 5 MRI better control (no MRI) better

Abbreviations: BCS, breast conserving surgery; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Figure 4-5d. Overall survival.

Abbreviations: BCS, breast conserving surgery; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Table 4-3. Summary of odds or hazard ratios and confidence intervals from forest plots.

Outcome	Group	Subgroup	OR or HR and 95% CI*	OR and 95% CI
		J 5p		excluding registry
				data
Initial	All		1.42 (1.19-1.69)	1.34 (1.11-1.62)
mastectomy	Patients initially		5.18 (2.37-11.29)	No registry data
	assigned BCS only**		,	
	Not restricted to BCS**		1.29 (1.09-1.53)	1.25 (1.15-1.36)
	Not restricted to BCS**	In situ	1.90 (1.28-2.82)	1.15 (0.74-1.78)
	Not restricted to BCS**	Invasive	1.48 (1.26-1.73	1.47 (1.12-1.92)
	Not restricted to BCS**	ILC	1.01 (0.80-1.27)	1.10 (0.76-1.59)
Final	All		1.24 (1.11-1.39)	1.07 (0.90-1.27)
mastectomy	Patients initially		1.87 (1.23-2.85)	1.72 (1.02-2.87)
	assigned BCS only**			
	Not restricted to BCS**		1.19 (1.06-1.33)	0.98 (0.82-1.17)
	Not restricted to BCS**	In situ	1.68 (1.15-2.47)	1.05 (0.69-1.60)
	Not restricted to BCS**	Invasive	1.31 (1.10-1.56)	1.14 (0.89-1.47)
	Not restricted to BCS**	ILC	0.91 (0.75-1.11)	0.88 (0.68-1.15)
Positive	All		0.89 (0.74-1.06)	0.78 (0.56-1.07)
margins	Low or low/moderate		0.57 (0.36-0.89)	No registry data
	RoB studies only			
	All	In situ	1.01 (0.77-1.32)	0.74 (0.25-2.15)
	All	Invasive	0.98 (0.84-1.13)	1.08 (0.71-1.63)
	All	ILC	0.63 (0.49-0.82)	(no studies)
Reoperations	All		0.73 (0.63-0.85)	0.56 (0.44-0.73)
	Excluding high risk of		0.69 (0.59-0.81)	0.50 (0.37-0.66)
	bias RCTs		0.70 (0.40 4.00)	
	RCTs only		0.78 (0.49-1.22)	(not applicable)
	RCTs, excluding high risk of bias RCTs		0.57 (0.33-0.97)	(not applicable)
	Non-RCTs	+	0.72 (0.61-0.85)	0.47 (0.33-0.67)
	All	In situ	0.92 (0.68-1.26)	0.62 (0.38-1.00)
	All	Invasive	0.96 (0.88-1.05)	0.95 (0.81-1.10)
	All	ILC	0.30 (0.13-0.72)	No registry data
Do oveisions	All	ILC	0.63 (0.45-0.89)	0.59 (0.42-0.84)
Re-excisions	Excluding high risk of		0.54 (0.37-0.80)	0.59 (0.42-0.64)
	bias RCTs		0.54 (0.57-0.80)	0.51 (0.55-0.75)
	RCTs only	1	0.79 (0.45-1.37)	(not applicable)
	RCTs, excluding high		0.54 (0.27-1.08)	(not applicable)
	risk of bias RCTs		0.51 (0.27 1.00)	(not applicable)
	Non-RCTs		0.54 (0.34-0.88)	0.49 (0.31-0.76)
	All	In situ	0.92 (0.62-1.38)	0.75 (0.49-1.15)
	All	Invasive	1.21 (0.87-1.67)	0.97 (0.39-2.41)
	All	ILC	0.42 (0.13-1.35)	0.29 (0.05-1.81)
Conversion	All		0.76 (0.58-0.99)	0.70 (0.53-0.93)
mastectomy	RCTs only		0.72 (0.53-0.96)	(not applicable)
			(0.00 0.00)	(**************************************
	RCTs, excluding high		0.66 (0.41-1.07)	(not applicable)
	risk of bias RCTs		,	,
	Non-RCTs		0.77 (0.54-1.11)	0.67 (0.42-1.05)
	All	In situ	0.87 (0.43-1.76)	0.63 (0.23-1.74)
	All	Invasive	0.80 (0.431.49)	No registry data

Outcome	Group	Subgroup	OR or HR and 95% CI*	OR and 95% CI excluding registry data
			0.00 (0.05 0.5()	
	All	ILC	0.38 (0.25-0.56)	No registry data
Synchronous CBC	All		2.52 (1.75-3.62) [HR>1 indicates higher detection with MRI]	2.94 (2.50-3.46) [2/4 studies]
Metachronous CBC	All		0.71 (0.59-0.85) [HR<1 indicates lower rate in MRI group]	No registry data
Recurrence	Any recurrence		0.77 (0.65-0.90)	No registry data
	Locoregional		0.85 (0.69-1.04)	No registry data
	Distant		0.77 (0.56-1.07)	No registry data
DFS/RFS			0.77 (0.53-1.12)	0.66 (0.47-0.92)
OS			0.89 (0.74-1.07)	0.77 (0.48-1.24)

OR were generally reported for short-term outcomes, while HR were generally reported for recurrence and survival outcomes. OR and HR were both used for CBC and therefore data for these CBC were converted to HR.

Abbreviations: BCS, breast conserving surgery; CBC, contralateral breast cancer; CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; OR, odds ratio; OS, overall survival; RFS, recurrence-free survival; RCT, randomized-control trial

^{**}Some studies (mostly RCTs) made a decision prior to MRI on the type of surgery that would be conducted, and then only included patients who (in the absence of MRI results) would receive BCS.

Table 4-4. Summary of findings from GRADEPro.

Table 4-4a. MRI versus no MRI for treatment planning (outcome is mastectomy rate).

Outroms	Dalativa	Anticipated	absolute e	ffects (95% CI)	
Outcome Number of participants (studies)	Relative effect (95% CI)	Risk with MRI (%)	Risk without MRI (%)	Difference	Certainty
Initial mastectomy rate Number of participants: 135,985 (19 observational studies)	OR 1.42 (1.19 to 1.69)	34.6 % (30.7 to 38.6)	27.1%	7.5% more (3.6 more to 11.5 more)	⊕○○○ Very low ^{a,b}
Initial mastectomy rate - Assigned BCS prior to MRI Number of participants: 2,521 (4 RCTs)	OR 5.18 (2.37 to 11.29)	5.5 % (2.6 to 11.3)	1.1%	4.4% more (1.5 more to 10.2 more)	⊕○○○ Very low ^{c,d}
Initial mastectomy rate - Surgery not specified prior to MRI Number of participants: 133,464 (15 observational studies)	OR 1.29 (1.09 to 1.53)	38.0% (34.2 to 42.1)	32.3%	5.8% more (1.9 more to 9.9 more)	⊕⊕⊜⊖ Low ^{a,b}
Initial mastectomy rate by subtype (excluding studies restricted to BCS candidates) - In situ Number of participants: 11,459 (4 observational studies)	OR 1.90 (1.28 to 2.82)	37.4 % (28.7 to 47)	23.9%	13.5% more (4.8 more to 23.1 more)	⊕○○○ Very low ^{a,b}
Initial mastectomy rate by subtype (excluding studies restricted to BCS candidates) - Invasive Number of participants: 51,967 (6 observational studies)	OR 1.48 (1.26 to 1.73)	32.4 % (29 to 35.9)	24.5%	7.9% more (4.5 more to 11.4 more)	⊕⊕⊜⊖ Low ^{a,b}
Initial mastectomy rate by subtype (excluding studies restricted to BCS candidates) - ILC Number of participants: 8,402 (5 observational studies)	OR 1.01 (0.80 to 1.27)	39.0% (33.6 to 44.5)	38.7%	0.2% more (5.1 fewer to 5.8 more)	⊕○○○ Very low ^{a,b,e}
Final (overall) mastectomy rate Number of participants: 342,285 (29 observational studies)	OR 1.24 (1.11 to 1.39)	37.7 % (35.1 to 40.4)	32.8%	4.9% more (2.3 more to 7.6 more)	⊕○○○ Very low ^{a,b}
Final (overall) mastectomy rate - Assigned BCS prior to MRI Number of participants: 4,905 (5 RCTs)	OR 1.87 (1.23 to 2.85)	14.0% (9.7 to 19.9)	8.0%	6.0% more (1.7 more to 11.9 more)	⊕○○○ Very low ^{b,c,d}
Final (overall) mastectomy rate - Surgery not specified prior to MRI Number of participants: 337,380 (24 observational studies)	OR 1.19 (1.06 to 1.33)	41.8 % (39 to 44.5)	37.6%	4.2% more (1.4 more to 6.9 more)	⊕⊕⊜⊖ Low ^{a,b}
Final (overall) mastectomy rate by subtype (excluding studies restricted to BCS candidates) - In situ Number of participants: 12,248 (5 observational studies)	OR 1.68 (1.15 to 2.47)	40.7 % (32 to 50.2)	29.0%	11.7% more (3 more to 21.2 more)	⊕⊕○○ Low ^{a,b}
Final (overall) mastectomy rate by subtype (excluding studies restricted to BCS candidates) - Invasive Number of participants: 152,075 (8 observational studies)	OR 1.31 (1.10 to 1.56)	40.4% (36.2 to 44.6)	34.1%	6.3% more (2.2 more to 10.6 more)	⊕⊕○○ Low ^{a,b}
Final (overall) mastectomy rate by subtype (excluding studies restricted to BCS candidates) - ILC Number of participants: 3,689 (5 observational studies)	RR 0.91 (0.75 to 1.11)	44.1% (36.4 to 53.8)	48.5%	4.4% fewer (12.1 fewer to 5.3 more)	⊕⊕○○ Low ^{a,e}

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Explanations

a. Low to moderate risk of bias for most studies; b. $1^2 > 50\%$; c. High risk of bias due to study design; d. Only included patients determined prior to MRI as BCS candidates; e. Less than optimal sample size

Abbreviations: BCS, breast conserving surgery; CI, confidence interval; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; OR, odds ratio; RCT, randomized controlled trial; RR, relative risk

Table 4-4b. MRI versus no MRI for treatment planning (outcome is positive margins).

Outcome	Relative	Antici	pated absolu	ute effects (95% CI)	
Outcome Number of participants (studies)	effect (95% CI)	Risk with MRI (%)	Risk without MRI (%)	Difference	Certainty
Positive margins - All studies Number of participants: 53,158 (11 observational studies)	OR 0.89 (0.74 to 1.06)	16.5 % (14.1 to 19.1)	18.2%	1.7% fewer (4.1 fewer to 0.9 more)	⊕⊕⊖⊖ Low ^{a,b}
Positive margins, subset with low or low-moderate RoB Number of participants: 3,101 (5 observational studies)	OR 0.57 (0.36 to 0.89)	6.5 % (4.2 to 9.8)	10.9%	4.4% fewer (6.7 fewer to 1.1 fewer)	⊕⊕⊕○ Moderate ^b
Positive margins by subtype - In situ Number of participants: 8,488 (4 observational studies)	OR 1.01 (0.77 to 1.32)	22.5% (18.1 to 27.5)	22.3%	0.2% more (4.2 fewer to 5.2 more)	⊕○○○ Very low ^{a,c}
Positive margins by subtype - Invasive Number of participants: 34,238 (4 observational studies)	OR 0.98 (0.84 to 1.13)	9.1 % (7.9 to 10.4)	9.3%	0.2% fewer (1.4 fewer to 1.1 more)	⊕○○ Very low ^{a,c}
Positive margins by subtype - ILC Number of participants: 5,536 (2 observational studies)	OR 0.63 (0.49 to 0.82)	18.9 % (15.3 to 23.3)	27.0%	8.1% fewer (11.7 fewer to 3.7 fewer)	⊕⊕⊕○ Moderateª

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; OR: odds ratio GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Explanations

a. Risk of bias is moderate in most studies; b. $1^2 > 50\%$; c. Less than optimal sample size

Abbreviations: CI, confidence interval; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; OR, odds ratio; RoB, risk of bias

Table 4-4c. MRI versus no MRI for treatment planning (outcome is additional surgery).

Outcomo	Dolativo	Antici			
Outcome Number of participants (studies)	Relative effect (95% CI)	Risk with MRI (%)	Risk without MRI (%)	Difference	Certainty
Reoperations, all patients Number of participants: 109,856 (22 observational studies)	OR 0.73 (0.63 to 0.85)	14.4% (12.6 to 16.3)	18.7%	4.3% fewer (6 fewer to 2.3 fewer)	⊕⊕⊖⊖ Low ^{a,b}
Reoperations, RCT only Number of participants: 3,064 (6 RCTs)	OR 0.78 (0.49 to 1.22)	16.6% (11.1 to 23.7)	20.3%	3.7% fewer (9.2 fewer to 3.4 more)	⊕○○○ Very low ^{b,c,d}
Reoperations, non-RCT Number of participants: 106,792 (16 observational studies)	OR 0.72 (0.61 to 0.85)	13.7% (11.9 to 15.8)	18.1%	4.4% fewer (6.2 fewer to 2.3 fewer)	⊕⊕⊖⊖ Low ^{a,b}
Reoperations, by subtype - In situ Number of participants: 17,289 (5 observational studies)	OR 0.92 (0.68 to 1.26)	20.0 % (15.6 to 25.5)	21.4%	1.4% fewer (5.8 fewer to 4.1 more)	⊕⊕⊜⊖ Low ^{a,b}
Reoperations, by subtype - Invasive Number of participants: 49,512 (6 observational studies)	OR 0.96 (0.88 to 1.05)	17.5 % (16.3 to 18.8)	18.1%	0.6% fewer (1.8 fewer to 0.7 more)	⊕⊕⊜⊖ Low ^{a,d}
Reoperations, by subtype - ILC Number of participants: 2,123 (3 observational studies)	OR 0.30 (0.13 to 0.72)	12.3 % (5.7 to 25.2)	31.9%	19.6% fewer (26.1 fewer to 6.7 fewer)	⊕⊕⊕○ Moderate ^{a,b}
Re-excisions, all patients Number of participants: 12,739 (17 observational studies)	OR 0.63 (0.45 to 0.89)	6.9 % (5 to 9.5)	10.5%	3.6% fewer (5.5 fewer to 1 fewer)	⊕⊕○○ Low ^{a,b}
Re-excisions, RCT Number of participants: 3,155 (7 RCTs)	OR 0.79 (0.45 to 1.37)	8.4 % (5 to 13.7)	10.4%	2.0% fewer (5.4 fewer to 3.3 more)	⊕○○○ Very low ^{b,c,d}
Re-excisions, non-RCT Number of participants: 9,584 (10 observational studies)	OR 0.54 (0.34 to 0.88)	6.0 % (3.9 to 9.4)	10.5%	4.6% fewer (6.7 fewer to 1.1 fewer)	⊕⊕⊜ Low ^{a,b}
Re-excisions, by subtype - In situ Number of participants: 1,206 (4 observational studies)	OR 0.92 (0.62 to 1.38)	11.2 % (7.8 to 15.9)	12.0%	0.9% fewer (4.2 fewer to 3.9 more)	⊕○○○ Very low ^{a,d}
Re-excisions, by subtype - Invasive Number of participants: 4,694 (3 observational studies)	OR 1.21 (0.87 to 1.67)	12.0 % (9 to 15.9)	10.2%	1.9% more (1.2 fewer to 5.7 more)	⊕⊕○○ Low ^{a,d}
Re-excisions, by subtype - ILC Number of participants: 2,524 (4 observational studies)	OR 0.42 (0.13 to 1.35)	8.3% (2.7 to 22.5)	17.7%	9.4% fewer (15 fewer to 4.8 more)	⊕⊕⊖⊖ Low ^{a,b}
Conversion mastectomy, all patients Number of participants: 27,736 (15 observational studies)	OR 0.76 (0.58 to 0.99)	5.5% (4.3 to 7.1)	7.1%	1.6% fewer (2.9 fewer to 0.1 fewer)	⊕⊕⊖⊖ Low ^{a,b}
Conversion mastectomy, RCT Number of participants: 3,064 (6 RCTs)	OR 0.72 (0.53 to 0.96)	6.6 % (5 to 8.6)	9.0%	2.3% fewer (4 fewer to 0.3 fewer)	⊕○○○ Very low ^{c,d}
Conversion mastectomy, non-RCT Number of participants: 24,672 (9 observational studies)	OR 0.77 (0.54 to 1.11)	4.9 % (3.5 to 7)	6.3%	1.4% fewer (2.8 fewer to 0.6 more)	⊕⊕⊜⊖ Low ^{a,b}
Conversion mastectomy, by subtype - In situ Number of participants: 8,113 (4 observational studies)	OR 0.87 (0.43 to 1.76)	6.4 % (3.3 to 12.2)	7.3%	0.9% fewer (4 fewer to 4.9 more)	⊕○○ Very low ^{a,b,d}

Outcome	Relative	Anticip	oated absolute	e effects (95% CI)	
Outcome Number of participants (studies)	effect (95% CI)	Risk with MRI (%)	Risk without MRI (%)	Difference	Certainty
Conversion mastectomy, by subtype - Invasive Number of participants: 12,617 (4 observational studies)	OR 0.80 (0.43 to 1.49)	4.7 % (2.6 to 8.3)	5.8%	1.1% fewer (3.2 fewer to 2.6 more)	⊕○○○ Very low ^{a,b,d}
Conversion mastectomy, by subtype - ILC Number of participants: 2,123 (3 observational studies)	OR 0.38 (0.25 to 0.56)	5.9 % (4 to 8.5)	14.2%	8.3% fewer (10.3 fewer to 5.7 fewer)	⊕⊕⊕⊕ Highª

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Explanations

a. Risk of bias is moderate in most studies; b. $I^2 > 50\%$; c. Risk of bias some concerns or high; d. Less than optimal sample size.

Abbreviations: CI, confidence interval; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; OR, odds ratio; RCT, randomized controlled trial

Table 4-4d. MRI versus no MRI for treatment planning (outcome is contralateral cancer).

Outcome	Relative	An	ticipated abso	olute effects (95% CI)	
Number of participants (studies)	effect (95% CI)	Risk with MRI (%)	Risk without MRI (%)	Difference	Certainty
Synchronous Contralateral Breast Cancer (CBC) Number of participants: 61929 (4 observational studies)	HR 2.52 (1.75 to 3.62)	4.7%	1.9%	2.8% more (1.4 more to 4.8 more)	⊕⊕⊕○ Moderate ^{a,b}
Metachronous Contralateral Breast Cancer Number of participants: 31095 (8 observational studies)	HR 0.71 (0.59 to 0.85)	1.7%	2.4%	0.7% fewer (1 fewer to 0.4 fewer)	⊕⊕⊕○ Moderate ª

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; HR: hazard ratio

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Explanations

a. Risk of bias is moderate in most studies; b. $l^2 > 50\%$

Abbreviations: CI, confidence interval; HR, hazard ratio; MRI, magnetic resonance imaging

Table 4-4e. MRI compared to no MRI for treatment planning (outcome is survival or recurrence).

Outcome	Relative	Anticip	ated absolute e	effects (95% CI)			
Number of participants (studies)	effect (95% CI)	Risk with MRI (%)	Risk without MRI (%)	Difference	Certainty		
Recurrence: Locoregional +			e				
Distant (+ contralateral in some studies) Number of participants: 9,052 (11 observational studies)	HR 0.77 (0.65 to 0.90)	8.2 % (7 to 9.5)	10.5%	2.3% fewer (3.6 fewer to 1 fewer)	⊕⊕⊕○ Moderateª		
Locoregional Recurrence			LRR				
(ipsilateral breast or lymph nodes) Number of participants: 8,996 (10 observational studies)	HR 0.85 (0.69 to 1.04)	4.8 % (3.9 to 5.9)	5.7%	0.8% fewer (1.7 fewer to 0.2 more)	⊕⊕○○ Low ^{a,b}		
District December 1			Distant Recur	rence			
Distant Recurrence Number of participants: 3,304 (6 observational studies)	HR 0.77 (0.56 to 1.07)	4.7 % (3.5 to 6.5)	6.1%	1.4% fewer (2.6 fewer to 0.4 more)	⊕⊕⊖⊖ Low ^{a,b}		
Recurrence-Free Survival (Disease-	HR 0.77						
Free Survival) Number of participants: 34,202 (6 observational studies)	(0.53 to 1.12) [recurrence or death]	91.6 % (88.1 to 94.2)	89.3%	2.4% more DFS (1.2 fewer to 4.9 more)	⊕⊕⊕○ Moderateª		
			Overall Surv	ival			
Overall Survival Number of participants: 33804 (5 observational studies)	HR 0.89 (0.74 to 1.07) [death]	93.8 % (92.6 to 94.8)	93.0%	0.7% more OS (0.5 fewer to 1.8 more)	⊕⊕⊕○ Moderateª		

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Explanations

a. Risk of bias is low to moderate in most studies; b. Less than optimal sample size

Abbreviations: CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; MRI, magnetic resonance imaging; OS, overall survival

Table 4-5. Grade profiles from GRADEPro

Table 4-5a. MRI compared to no MRI for treatment planning (outcome is mastectomy rate).

		Certa	inty assessmer	nt			Summary of findings				
Dantinin anta					Other	Overall certainty	Study ever	nt rates (%)	Dalatina effect	Antici	pated absolute effects
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	considerations	of evidence	With no MRI	With MRI	Relative effect (95% CI)	Risk with no MRI	Risk difference with MRI
Initial mastectomy rate											
135,985 (19 observational studies)	very serious ^a	serious ^b	not serious	not serious	none	⊕○○○ Very low	28,723/105928 (27.1%)	10,405/30,057 (34.6%)	OR 1.42 (1.19 to 1.69)	271 per 1,000	75 more per 1,000 (from 36 more to 115 more)
Initial mastectomy rate - A	Assigned BCS p	rior to MRI				•					
2,521 (4 RCTs)	very serious ^c	not serious	very serious ^d	not serious	none	⊕○○○ Very low	14/1,258 (1.1%)	70/1,263 (5.5%)	OR 5.18 (2.37 to 11.29)	11 per 1,000	44 more per 1,000 (from 15 more to 102 more)
Initial mastectomy rate - S	urgery not spe	ecified prior to	MRI			•	•				
133,464 (15 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	33,758/104,670 (32.3%)	10,957/28,794 (38.1%)	OR 1.29 (1.09 to 1.53)	323 per 1,000	58 more per 1,000 (from 19 more to 99 more)
Initial mastectomy rate by	subtype (excl	luding studies re	estricted to BCS	candidates) - In	situ						
11,459 (4 observational studies)	very serious ^a	serious ^b	not serious	not serious	none	⊕○○○ Very low	2,075/8,681 (23.9%)	1,039/2,778 (37.4%)	OR 1.90 (1.28 to 2.82)	239 per 1,000	135 more per 1,000 (from 48 more to 231 more)
Initial mastectomy rate by	subtype (excl	luding studies re	estricted to BCS	candidates) - In	vasive						
51,967 (6 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕⊜⊝ Low	9,836/40,229 (24.5%)	3,797/11,738 (32.3%)	OR 1.48 (1.26 to 1.73)	245 per 1,000	79 more per 1,000 (from 45 more to 114 more)
Initial mastectomy rate by	subtype (excl	luding studies re	estricted to BCS	candidates) - IL	c						
8,402 (5 observational studies)	serious ^a	serious ^b	not serious	very serious ^e	none	⊕○○○ Very low	1,739/4,488 (38.7%)	1,571/3,914 (40.1%)	OR 1.01 (0.80 to 1.27)	387 per 1,000	2 more per 1,000 (from 51 fewer to 58 more)
Final (overall) mastectomy	rate										
342,285 (29 observational studies)	very serious ^a	serious ^b	not serious	not serious	none	⊕○○○ Very low	94,444/288,156 (32.8%)	20,393/54,129 (37.7%)	OR 1.24 (1.11 to 1.39)	328 per 1,000	49 more per 1,000 (from 23 more to 76 more)
Final (overall) mastectomy	rate - Assigne	ed BCS prior to	MRI	•							
4,905 (5 RCTs)	very serious ^c	serious ^b	very serious ^d	not serious	none	⊕○○○ Very low	277/3,457 (8.0%)	203/1,448 (14.0%)	OR 1.87 (1.23 to 2.85)	80 per 1,000	60 more per 1,000 (from 17 more to 119 more)
Final (overall) mastectomy	rate - Surger	y not specified	prior to MRI			•	•				
337,380 (24 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕⊖⊖ Low	107,052/284,699 (37.6%)	22,022/52,681 (41.8%)	OR 1.19 (1.06 to 1.33)	376 per 1,000	42 more per 1,000 (from 14 more to 69 more)

Section 4: Evidence Base - March 24, 2023 Page 61

		Certa	inty assessmer	nt			Summary of findings						
Dartisinants					Other	Overall containts	Study ever	nt rates (%)	Relative effect	Anticipated absolute effects			
Participants (studies)	Risk of bias Inconsi	Inconsistency	Indirectness	Imprecision	considerations	Overall certainty of evidence	With no MRI	With MRI	(95% CI)	Risk with no MRI	Risk difference with MRI		
Final (overall) mastectomy rate by subtype (excluding studies restricted to BCS candidates) - In situ													
12,248 (5 observational studies)	seriousª	serious ^b	not serious	not serious	none	⊕⊕○○ Low	2,734/9,430 (29.0%)	1,147/2,818 (40.7%)	OR 1.68 (1.15 to 2.47)	290 per 1,000	117 more per 1,000 (from 30 more to 212 more)		
Final (overall) mastectomy	rate by subty	pe (excluding s	tudies restricted	to BCS candida	ites) - Invasive								
152,075 (8 observational studies)	seriousª	serious ^b	not serious	not serious	none	⊕⊕○○ Low	44,598/130,882 (34.1%)	8,557/21,193 (40.4%)	OR 1.31 (1.10 to 1.56)	341 per 1,000	63 more per 1,000 (from 22 more to 106 more)		
Final (overall) mastectomy	rate by subty	pe (excluding s	tudies restricted	to BCS candida	ites) - ILC								
3,689 (5 observational studies)	serious ^a	not serious	not serious	serious ^e	none	⊕⊕○○ Low	1,059/2,185 (48.5%)	693/1,504 (46.1%)	RR 0.91 (0.75 to 1.11)	485 per 1,000	44 fewer per 1,000 (from 121 fewer to 53 more)		

Explanations

a. Low to moderate risk of bias for most studies; b. 1² >50%; c. High risk of bias due to study design; d. Only included patients determined prior to MRI as BCS candidates; e. Less than optimal sample size

Abbreviations: BCS, breast conserving surgery; CI, confidence interval; ILC, invasive lobular carcinoma; OR, odds ratio; MRI, magnetic resonance imaging; RR, relative risk

Section 4: Evidence Base - March 24, 2023 Page 62

Table 4-5b. MRI compared to no MRI for treatment planning (outcome is positive margins).

		Certa	inty assessme	nt				9	summary of fin	dings	
Doubleinoute					Other	Overall	Study ever	Study event rates (%)		Anticip	ated absolute effects
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	considerations	certainty of evidence	With no MRI	With MRI	Relative effect (95% CI)	Risk with no MRI	Risk difference with MRI
Positive margins - All stud	dies										
53,158 (11 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	6,746/37123 (18.2%)	2,641/16,035 (16.5%)	OR 0.89 (0.74 to 1.06)	182 per 1,000	17 fewer per 1,000 (from 41 fewer to 9 more)
Positive margins, subset	with low or low	-moderate RoB					•				
3,101 (5 observational studies)	not serious	serious ^b	not serious	not serious	none	⊕⊕⊕○ Moderate	172/1,579 (10.9%)	99/1,522 (6.5%)	OR 0.57 (0.36 to 0.89)	109 per 1,000	44 fewer per 1,000 (from 67 fewer to 11 fewer)
Positive margins by subty	pe - In situ					1				•	
8,488 (4 observational studies)	serious ^a	not serious	not serious	very serious ^c	none	⊕○○○ Very low	1,480/6,629 (22.3%)	419/1,859 (22.5%)	OR 1.01 (0.77 to 1.32)	223 per 1,000	2 more per 1,000 (from 42 fewer to 52 more)
Positive margins by subty	pe - Invasive						•				
34,238 (4 observational studies)	serious ^a	not serious	not serious	very serious ^c	none	⊕○○○ Very low	2,303/24,766 (9.3%)	862/9,472 (9.1%)	OR 0.98 (0.84 to 1.13)	93 per 1,000	2 fewer per 1,000 (from 14 fewer to 11 more)
Positive margins by subty	pe - ILC						•				
5,536 (2 observational studies)	serious ^a	not serious	not serious	not serious	none	⊕⊕⊕○ Moderate	674/2,498 (27.0%)	574/3,038 (18.9%)	OR 0.63 (0.49 to 0.82)	270 per 1,000	81 fewer per 1,000 (from 117 fewer to 37 fewer)

Explanations

Abbreviations: CI, confidence interval; ILC, invasive lobular carcinoma; OR, odds ratio; MRI, magnetic resonance imaging; RoB, risk of bias

a. Risk of bias is moderate in most studies; b. 12 >50%; c. Less than optimal sample size

Table 4-5c. MRI compared to no MRI for treatment planning (outcome is additional surgery).

		Certai	nty assessmer	nt			Summary of findings				
Doubleinonte					Other	Overall	Study even	t rates (%)	Relative effect	Anticip	ated absolute effects
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	considerations	certainty of evidence	With no MRI	With MRI	(95% CI)	Risk with no MRI	Risk difference with MRI
Reoperations, all patients	i										
109,856 (22 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	17,524/93,868 (18.7%)	2,297/15,988 (14.4%)	OR 0.73 (0.63 to 0.85)	187 per 1,000	43 fewer per 1,000 (from 60 fewer to 23 fewer)
Reoperations, RCT only											
3,064 (6 RCTs)	serious ^c	serious ^b	not serious	serious ^d	none	⊕○○○ Very low	310/1,528 (20.3%)	255/1,536 (16.6%)	OR 0.78 (0.49 to 1.22)	203 per 1,000	37 fewer per 1,000 (from 92 fewer to 34 more)
Reoperations, non-RCT											
106,792 (16 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	16,700/92,340 (18.1%)	1,978/14,452 (13.7%)	OR 0.72 (0.61 to 0.85)	181 per 1,000	44 fewer per 1,000 (from 62 fewer to 23 fewer)
Reoperations, by subtype	- In situ										
17,289 (5 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	3,239/15,136 (21.4%)	431/2,153 (20.0%)	OR 0.92 (0.68 to 1.26)	214 per 1,000	14 fewer per 1,000 (from 58 fewer to 41 more)
Reoperations, by subtype	- Invasive										
49,512 (6 observational studies)	serious ^a	not serious	not serious	serious ^d	none	⊕⊕○○ Low	8,121/44,867 (18.1%)	813/4,645 (17.5%)	OR 0.96 (0.88 to 1.05)	181 per 1,000	6 fewer per 1,000 (from 18 fewer to 7 more)
Reoperations, by subtype	- ILC										
2,123 (3 observational studies)	serious ^a	serious ^b	not serious	not serious	strong association ^e	⊕⊕⊕○ Moderate	443/1,390 (31.9%)	90/733 (12.3%)	OR 0.30 (0.13 to 0.72)	319 per 1,000	196 fewer per 1,000 (from 261 fewer to 67 fewer)
Re-excisions, all patients											
12,739 (17 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	746/7,106 (10.5%)	389/5,633 (6.9%)	OR 0.63 (0.45 to 0.89)	105 per 1,000	36 fewer per 1,000 (from 55 fewer to 10 fewer)
Re-excisions, RCT		1		•						1	
3,155 (7 RCTs)	very serious ^c	serious ^b	not serious	serious ^d	none	⊕○○○ Very low	164/1,577 (10.4%)	133/1,578 (8.4%)	OR 0.79 (0.45 to 1.37)	104 per 1,000	20 fewer per 1,000 (from 54 fewer to 33 more)
Re-excisions, non-RCT				•			-				
9,584 (10 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	583/5,529 (10.5%)	241/4,055 (5.9%)	OR 0.54 (0.34 to 0.88)	105 per 1,000	46 fewer per 1,000 (from 67 fewer to 11 fewer)

Section 4: Evidence Base - March 24, 2023 Page 64

4.207						-000	07 /722 /42 00/	E4/494 (44 30/)	00.00	120 1 000	0 farrage and 1 000
1,206 (4 observational studies)	serious ^a	not serious	not serious	very serious ^d	none	⊕○○○ Very low	87/722 (12.0%)	54/484 (11.2%)	OR 0.92 (0.62 to 1.38)	120 per 1,000	9 fewer per 1,000 (from 42 fewer to 39 more)
Re-excisions, by subtype	· Invasive										
4,694 (3 observational studies)	serious ^a	not serious	not serious	serious ^d	none	⊕⊕○○ Low	307/3,024 (10.2%)	201/1,670 (12.0%)	OR 1.21 (0.87 to 1.67)	102 per 1,000	19 more per 1,000 (from 12 fewer to 57 more)
Re-excisions, by subtype	- ILC										
2,524 (4 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	270/1,527 (17.7%)	83/997 (8.3%)	OR 0.42 (0.13 to 1.35)	177 per 1,000	94 fewer per 1,000 (from 150 fewer to 48 more)
Conversion mastectomy, a	all patients						•				
27,736 (15 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕○○ Low	1,543/21,643 (7.1%)	294/6,093 (4.8%)	OR 0.76 (0.58 to 0.99)	71 per 1,000	16 fewer per 1,000 (from 29 fewer to 1 fewer)
Conversion mastectomy, I	RCT						•				
3,064 (6 RCTs)	very serious ^c	not serious	not serious	serious ^d	none	⊕○○○ Very low	137/1,528 (9.0%)	102/1,536 (6.6%)	OR 0.72 (0.53 to 0.96)	90 per 1,000	23 fewer per 1,000 (from 40 fewer to 3 fewer)
Conversion mastectomy, i	non-RCT										
24,672 (9 observational studies)	serious ^a	serious ^b	not serious	not serious	none	⊕⊕⊖⊖ Low	1,272/20,115 (6.3%)	224/4,557 (4.9%)	OR 0.77 (0.54 to 1.11)	63 per 1,000	14 fewer per 1,000 (from 28 fewer to 6 more)
Conversion mastectomy, I	y subtype - In s	situ					•				
8,113 (4 observational studies)	serious ^a	serious ^b	not serious	serious ^d	none	⊕○○○ Very low	470/6,403 (7.3%)	110/1,710 (6.4%)	OR 0.87 (0.43 to 1.76)	73 per 1,000	9 fewer per 1,000 (from 40 fewer to 49 more)
Conversion mastectomy, I	oy subtype - Inv	asive					•				
12,617 (4 observational studies)	serious ^a	serious ^b	not serious	serious ^d	none	⊕○○○ Very low	627/10,897 (5.8%)	80/1,720 (4.7%)	OR 0.80 (0.43 to 1.49)	58 per 1,000	11 fewer per 1,000 (from 32 fewer to 26 more)
Conversion mastectomy, I	oy subtype - ILC										
2,123 (3 observational studies)	seriousa	not serious	not serious	not serious	strong association ^e	⊕⊕⊕⊕ High	198/1,390 (14.2%)	43/733 (5.9%)	OR 0.38 (0.25 to 0.56)	142 per 1,000	83 fewer per 1,000 (from 103 fewer to 57 fewer

Abbreviations: CI, confidence interval; ILC, invasive lobular carcinoma; OR, odds ratio; MRI, magnetic resonance imaging

Section 4: Evidence Base - March 24, 2023 Page 65

a. Risk of bias is moderate in most studies; b. I² >50%; c. Risk of bias some concerns or high; d. Less than optimal sample size; e. Outcomes with a large effect of preoperative MRI (OR<0.5) or very large effect (OR<0.2) were upgraded by one or two levels, respectively.

Table 4-5d. MRI compared to no MRI for treatment planning (outcome is contralateral cancer).

		C	ertainty assess	ment			Summary of findings					
Participants	Dist. of					Overall	Study eve	nt rates (%)	Dalati a afficia	Anticip	oated absolute effects	
(studies) Follow-up	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	certainty of evidence	Y WILLIEU NAME A		Relative effect (95% CI)	Risk with no MRI	Risk difference with MRI	
Synchronous Contrala	teral Breas	st Cancer										
61,929 (4 observational studies)	serious ^a	serious ^b	not serious	not serious	strong association ^c	⊕⊕⊕○ Moderate	770/40,774 (1.9%)	992/21,155 (4.7%)	HR 2.52 (1.75 to 3.62)	19 per 1,000	28 more per 1,000 (from 14 more to 48 more)	
Metachronous Contral	ateral Brea	ast Cancer		1			•			1		
31,095 (1 RCT and 7 other studies)	serious ^a	not serious	not serious	not serious	none	⊕⊕⊕○ Moderate	478/19,558 (2.4%)	201/11,537 (1.7%)	HR 0.71 (0.59 to 0.85)	24 per 1,000	7 fewer per 1,000 (from 10 fewer to 4 fewer)	

Explanations

a. Risk of bias is moderate in most studies; b. 1² >50%; c. Outcomes with a large effect of preoperative MRI (OR<0.5) or very large effect (OR<0.2) were upgraded by one or two levels, respectively.

Abbreviations: CI, confidence interval; HR, hazard ratio; ILC, invasive lobular carcinoma; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Section 4: Evidence Base - March 24, 2023 Page 66

Table 4-5e. MRI compared to no MRI for treatment planning (outcome is survival or recurrence).

		Ce	ertainty assessr	ment					Summary of f	indings	
Participants	Risk of					Overall	Study ever	nt rates (%)	Relative effect	Anticip	ated absolute effects
(studies) Follow-up	bias	Inconsistency	Indirectness	Imprecision	Other considerations	certainty of evidence	With no MRI	With MRI	(95% CI)	Risk with no MRI	Risk difference with MRI
Recurrence: Locoregio	nal + Dista	nt (+ contralateral	in some studies)								
9,052	seriousa	not serious	not serious	not serious	none	0000	5,118	3,934	HR 0.77		Recurrence
(3 RCT and 8 other studies)						Moderate	participants	participants	(0.65 to 0.90) Recurrence	105 per 1,000	23 fewer per 1,000 (from 36 fewer to 10 fewer)
Locoregional Recurren	ce (ipsilate	eral breast or lympl	n nodes)		-		I				
8,996	seriousa	not serious	not serious	serious ^b	none	000	5,197	3,799	HR 0.85	Locoi	egional Recurrence
(2 RCT and 8 other studies)						Low	participants	participants	(0.69 to 1.04) Recurrence	57 per 1,000	8 fewer per 1,000 (from 17 fewer to 2 more)
Distant Recurrence	-			•							
3,304	seriousa	not serious	not serious	serious ^b	none	0000	1,582	1,722	HR 0.77	Di	stant Recurrence
(3 RCT and 3 other studies)						Low	participants	participants	(0.56 to 1.07) Recurrence	61 per 1,000	14 fewer per 1,000 (from 26 fewer to 4 more)
Recurrence-Free Survi	val (Diseas	e-Free Survival)		•			•	1			
34,202	seriousa	not serious	not serious	not serious	none	⊕⊕⊕○	22,939	11,263	HR 0.77	Dis	ease-free Survival
(2 RCT and 4 other studies)						Moderate	participants	participants	(0.53 to 1.12) Recurrence or death	893 per 1,000	24 more per 1,000 (from 12 fewer to 49 more)
Overall Survival											
33,804	seriousa	not serious	not serious	not serious	none	0000	22,886	10,918	HR 0.89	Overall Survival	
(2 RCT and 3 other studies)						Moderate	participants	participants	(0.74 to 1.07) Death	930 per 1,000	7 more per 1,000 (from 5 fewer to 18 more)

Explanations

Abbreviations: CI, confidence interval; HR, hazard ratio; MRI, magnetic resonance imaging; RCT, randomized controlled trial

Section 4: Evidence Base - March 24, 2023 Page 67

a. Risk of bias is low to moderate in most studies; b. Less than optimal sample size.

Preoperative Breast Magnetic Resonance Imaging Guideline

Section 5: Internal and External Review

INTERNAL REVIEW

The guideline was evaluated by the GDG Expert Panel and the PEBC Report Approval Panel (Appendix 1). The results of these evaluations and the Working Group's responses are described below.

Patient and Caregiver-Specific Consultation Group

Five patients/survivors/caregivers participated as Consultation Group members for the Working Group. They reviewed the draft recommendations and provided feedback on its comprehensibility, appropriateness, and feasibility to the Working Group's Health Research Methodologist. The main comments from the Consultation Group are summarized in Table 5-1.

Table 5-1. Summary of the Working Group's responses to comments from the Patient Consultation Group.

Comments	Responses
 In recommendations, be more explicit that decision should be made after consultation between physician and patient 	We have added a phrase in the recommendations: The decision of whether to conduct MRI should be made <i>in consultation with the patient and</i>
The additional situations for breast MRI (following Recommendation 2) should be labelled as Recommendation 3	This change has been made
3. The table of risks and benefits indicates current delays due to MRI are 6 to 12 days; this seems to be too optimistic	We have removed the time estimate and reworded this to indicate MRI may result in delays, both while waiting for the MRI, and for subsequent biopsies (if needed).
 The patient population regarding stage of breast cancer is unclear. 	The Target Population and Background have been edited to more clearly indicate it applies to any breast cancer for which breast MRI may provide additional information on the extent of disease in the breasts.
5. Education of patients is critical, and the table of Benefits and Risks is useful	Education has been mentioned in Implementation Considerations
6. In some cases, patients may be reluctant to have MRI due to fear of the machine (claustrophobia, loud noise). Doctors should discuss whether there can be modifications made such as sedation or larger machine. Comment that despite claustrophobia, they	This has been added to implementation considerations

	would tolerate it because MRI was so important in treatment of cancer.	
7.	Quality of life was not listed and realize information may not be available. It was stressed that additional information from MRI allows better decision making and therefore better quality of life.	Due to retrospective nature of most studies, quality of life was usually not recorded as an independent outcome; however, the outcomes reported are all know to impact quality of life: positive margins result in reoperation and/or increased risk of recurrence and sometime unplanned and medically unnecessary mastectomy; recurrence requires additional surgery and/or other treatment and possible result in death; BCS may result in less complications and shorter surgery than mastectomy, more natural breasts, and less psychosexual effects
8.	Access to MRI may not be available in some communities where the patients live, or the wait time locally is unacceptable. Patients do not know how to navigate the health system, and therefore doctors should let them know the possibility of going to a more distant location for MRI.	A statement about access, delays, and individual situations has been added to implementation considerations. We are cautious about use of more distant MRI locations (other than proposed treatment centres) as MRI, additional testing, follow-up, and surgery are generally preferred to be at the same institution/location.

Expert Panel Review and Approval

The GDG Expert Panel consisted of eight members. All members voted and approved the document. The main comments from the Expert Panel and the Working Group's responses are summarized in Table 5-2.

Table 5-2. Summary of the Working Group's responses to comments from the Expert Panel.

Comments	Responses		
 Consider adding the following to Table 2-1: In patients with initial diagnosed occult breast cancer, may identify the breast lesion allowing more specific treatment, including less aggressive surgeries, including BCS. In the setting of Paget disease with negative conventional imaging studies, can identify underlying breast malignancy, facilitating proper treatment planning. 	Occult cancer was specifically excluded from the literature review; however, we note this was not mentioned in this document. A statement has been added to the Target Population section to reflect this. The comment on Paget disease has been added to the table.		
2. Table 2-1. Concerns of brain gadolinium accumulation may not be applicable to this scenario, because we are discussing a single specific preoperative study.	Degree of accumulation depends on degree of exposure and type of agent used. It can occur after a single MRI and therefore is kept in the table but reworded.		
3. Table 2-1. It is missing discussion of MRI cost, which may represent a real impediment to the global adoption of preoperative MRI, mainly in the sense that it is not feasible in countries with limited resources.	Cost has been added to Table 2-1, and a comment under limitations that cost analysis was outside the scope.		

When reviewing the document, the costs were considered outside the scope of the review, but it is so important that I suggest bringing it briefly here, with details considered out of the scope of the work. Under Evidence Base in Section 2. It is suggested to This has been added. include time period of search strategy to show it was the most up-to-date systematic review. 5. Consider including Paget disease in Other Comments This has been added. and/or Table 2-1 (see previous comment) 6. Recommendation 1 and the key evidence for We believe the recommendation accurately recommendation 1 support the routine use of MRI in reflects our intent. The recommendation indicates it applies to patients for whom patients diagnosed with breast cancer, other than in patients unlikely to have BCS (or MRI contraindicated). additional information about disease If such is the intent of Recommendation 1, then this extent could influence treatment. We have could be more explicit in the wording of clarified in the qualifying statement that treatment includes surgery and adjuvant recommendation one. therapy. The recommendation applies to both patients who (in the absence of MRI) will have BCS or mastectomy as both type of surgery and adjuvant treatment can change with additional information, depending on the rational for the initial decision. Contraindications to MRI are part of the assessment of risks and benefits. 7. I approve with condition that Recommendation 1 could The first objective is to find whether MRI is beneficial in an overall sense. If data exist be revisited to be less vague - it seems to say that the overall objective of these guidelines is to find which for more specific situations, then these patients would benefit from preop diagnostic MRI and would also be dealt with. Data found in the evidence summary were insufficient to summary of recommendation says that it could be used in anyone with cancer for which there may be benefit... make more specific recommendations. sort of a circular comment? This recommendation seems somewhat vague/ non-Recommendation 1 suggests use of MRI be prescriptive. As a surgeon, the goal is to excise "all" considered for all patients except in those for which any results would not make a known areas of identifiable disease. Often the decision for breast conservation versus mastectomy hinges on difference treatment. tο understanding of the extent of disease. Recommendations 2 and 3 provide specific recommendation invites MRI for all patients who are situations where MRI is recommended. not committed to mastectomy based on extent of While it is tempting to recommend MRI in disease identified by conventional imaging or upfront cases with higher probability of recurrence, patient preference for mastectomy independent of the evidence in the literature search was disease extent. Is there guidance for individualizing insufficient to reach this conclusion. the use of MRI for patients in whom conventional imaging is more likely to underestimate disease extent (e.g., patient age, multifocal or multicentric disease, breast density, previous breast surgery- cancer surgery or reduction mammoplasty, tumour histology etc.)? How should some of the factors in the first qualifying statement be used to selectively choose preoperative MRI for the patients who are most likely to benefit from the intervention? Since there are other competing imaging modalities Background information other (for example, I see a lot of contrast-enhanced techniques was provided in the systematic mammogram being done locally), the qualifying statements for Recommendation 1 should make some reference at least to their existence and insufficient data.

review. An additional qualifying statement has been added to Recommendation 1 to reflect that other advanced imaging may be suitable.

10. Among the key evidence for Recommendation 1, it would be useful to know whether more weight was given to DFS versus reduced rate of positive margins, for example. The eight bullet points of key evidence could be grouped according to those given more importance as outcomes versus less importance and/or according to those where the evidence is low to moderate versus moderate to strong.

Some more discussion of outcomes has been added to Section 4. The importance of outcomes was considered as part of the guideline development process and all those outcomes presented in this document were considered very important or critical. Strength of evidence varies, but all effects were in the same direction (MRI benefit) so all these together contribute to the recommendation. Survival and recurrence outcomes are generally the most important (unless adverse effects have large impact on quality of life) and therefore listed first.

11. Key Evidence Recommendation 1: For the study by Wang et al, 2018 on MRI in patients with or without radiation therapy, did any patients receive endocrine therapy and were patients selected appropriately for radiation therapy omission?

This study was reviewed, and it was decided due to limitations in design it should not be included as key evidence

12. Recommendation 3, Preoperative breast MRI is recommended to confirm suitability for partial breast irradiation (PBI):

Based on this and the following reviewer comment we have removed the recommendation for preoperative MRI in patients being considered for PBI.

The suitability for PBI is typically based on the final pathology after BCS and review of the CT-simulation plan to ensure that the tumour bed/seroma is visible (assisted by the placement of surgical clips) so that the clinical target volume receives the planned dose. PBI eligibility includes (ASTRO guidelines): unifocal T size <2cm, invasive ductal carcinoma only (no ILC), clear margins, age >50 years. Reference #37 found a higher likelihood of PBI ineligibility for young pts and ILC - but these are contraindications for PBI anyway. Age is clear cut and ILC would need preop MRI anyway for surgical planning. The EUSOMA guideline is based on older retrospective studies and does not consider the more recently published RCTs which demonstrated non-inferiority of PBI versus whole breast irradiation in carefully selected patients with early breast cancer, none of which mandated MRI. NSABP B39 eligibility was broader than RAPID or other PBI trials (B39 permitted women 18 years or older to participate in the trial, and was a negative trial - non-inferiority was not met). Maybe I am missing something, but based on my review I suggest removing this recommendation from the document.

In current practice, PBI eligibility is restricted by age, only invasive ductal carcinoma or DCIS, size, non-G3, no lymphovascular invasion, negative margin status and only unifocal focal disease. Multifocal or multicentric disease is also contraindication for PBI.

The ASTRO guidelines outline suitability for PBI, and patients are carefully selected.	
13. Recommendation 3d (PBI): Please clarify. Patients are considered for PBI after surgery based on gross tumour characteristics and microscopic staging and postoperative planning T (NSABP B 39 criteria). How does preoperative breast MRI impact decision for PBI?	Response for previous comment applies.
14. I would question the capacity of our current system to perform the number of MRIs and follow-up mammograms and ultrasounds that may follow from these recommendations. The guideline reports superior performance on all measures for MRI over conventional imaging and suggests consideration of MRI for all patients to best define disease extent and recommends all patients with lobular carcinoma (up to 10% of all breast cancer) have MRI.	Capacity issues are beyond the scope of this work; however, they are noted in the implementation considerations section, where is stated that "In Ontario there are currently capacity constraints that affect the availability of MRI. Additional MRI use may increase treatment delays beyond what are considered acceptable in some cases. Availability/accessibility varies among regions."
15. For key evidence in Recommendation 1, the confidence interval includes 1, suggesting a trend but not statistical significance. Is the benefit overstated?	While some outcomes are not statistically significant at the 95% level, they are at 93%. We have made recommendations based on the overall evidence for all outcomes, not one outcome in isolation. This has been added to Justification for Recommendation 1 and to Interpretations and Conclusions in Section 4.
16. Recommendation 2 suggests MRI for almost all patients with lobular histology. Should this be individualized for certain patients who may be more likely to benefit from the additional testing (e.g., age, breast density, etc.)?	Studies did not provide additional information based on patient or disease characteristics.
17. Recommendation 3c: CT is a more accessible study; does it provide equal value for evaluating pectoralis invasion?	Techniques other than MRI were outside scope unless as a third comparison to MRI and to no additional imaging.

Report Approval Panel Review and Approval

Three Report Approval Panel members reviewed this document during November to December 2022 and approved the document on December 5, 2022. The main comments from the Report Approval Panel and the Working Group's responses are summarized in Table 5-3.

Table 5-3. Summary of the Working Group's responses to comments from the Report Approval Panel.

Comments	Responses
1. In the Objectives, the phrase "about	This has been reworded.
whether or in what situations" would be	
clearer if reworded "indications for"	
2. It is unclear in Section 2 and not described	We have added a note to Recommendation 1 to
in Section 4 why there is a separate	indicate specific situations are covered in
recommendation for breast cancer and	Recommendations 2 and 3. Some additional
another for ILC.	information has been added to Recommendation 2
	justification and Section 4 noting that ILC is a specific
	type of breast cancer that is more difficult to
	diagnose by mammography and more likely to be

		multifocal; higher rates of contralateral cancer were already noted in key evidence statements.
3.	An explanation of 'levels of certainty' prior to the Recommendation tables would be helpful. Or perhaps as a foot note on the tables themselves would assist in providing clarify.	This has been added as a footnote to the Recommendation section.
4.	Table 2-1 lists anxiety as both benefit and harm. Is this patient dependent?	Further explanation has been added.
5.	The phrase 'should be considered' is not helpful because 'should' and 'consider' are directive and open ended, respectively. Perhaps 'could be considered'? Or 'may be considered'?	The wording reflects the intent that consideration of MRI use should occur (i.e., the physician should think about whether MRI is appropriate). We believe consideration is important, and will be followed by a decision as to whether MRI is appropriate for the particular circumstances. Decision has been replaced by "ensuing decision" to emphasize that consideration is only the first step. We have clarified that the consideration is on an individual basis.
6.	In the qualifying statements for Recommendation 1, the phrase 'Treatment in the recommendation includes surgery as well as radiation and systemic treatment' would be clearer' if 'treatment' were in quotations to indicate that word is extracted from the Recommendation.	This change has been made.
7.	How were the outcomes of interest chosen? Was patient input used to prioritize the outcomes of interest? The patient reviewers inquired into quality of life and the authors acknowledge that as a limitation in that the available evidence does not address this outcome. This issue could be a 'qualifier' or 'limitation' within the document itself.	The controversy in use of breast MRI is whether the information just detects more cancer or improves surgical and cancer-related outcomes. The outcomes were thus chosen to match the research question and objectives. Quality of life was not addressed as such (as a composite outcome); however, all the outcomes are acknowledged to have an impact on quality of life: positive margins result in reoperation which is negative; recurrence is negative as it requires additional surgery and/or other treatment and possible result in death; BCS may result in less complications and shorter surgery than mastectomy, more natural breasts, and less psychosexual effects.
8.	The health or research question is described in Section 2 but not Section 4.	Section 4 directs the reader to the systematic review previously completed where all details are available. However, for ease of reading, the Research Question and Target Population have been added to Section 4 of this guideline document.
9.	Limitations of the body of evidence are not indicated in the Results section of Section 4.	The Results and Discussion sections of the systematic review should be consulted.
10.	Health benefits, side effects, and risks have been considered. This is in Section 2 but not other sections.	Side effects and risks are generally well known and were not within scope of the literature review. To provide context to the reader, these are summarized in Table 2-1. Health benefits are improvement in outcomes and are clearly described in results and discussion section of the systematic review and reanalysis of data presented in Section 4 of the current document.

11. Section 4, Interpretation and Conclusions: Is recurrence here local or local and distant? Not sure why recurrence and death were combined? This is not routinely done in oncology trials and the link between them (especially local recurrence and OS) is not very clear.

All studies on recurrence and survival were reviewed to confirm the type of recurrence, and were reclassified into locoregional recurrence, distant recurrence, or total (any) recurrence. Two studies were removed from the meta-analysis.

The remaining studies included locoregional and distant recurrence (and most included contralateral cancer) in their definition of DFS.

RFS or DFS is a commonly reported outcome in breast cancer trials, at least in part to the high survival rate in early breast cancer and extremely long time required to accumulate sufficient OS events. DFS is an outcome that patients often rate as very important, even if there is no difference in OS.

EXTERNAL REVIEW External Review by Ontario Clinicians and Other Experts

Targeted Peer Review

Three targeted peer reviewers from Ontario and Quebec who are considered to be clinical and/or methodological experts on the topic were identified by the Working Group and agreed to be reviewers. Three responses were received. Results of the feedback survey are summarized in Table 5-4. The main comments from targeted peer reviewers and the Working Group's responses are summarized in Table 5-5.

Table 5-4. Responses to nine items on the targeted peer reviewer questionnaire.

	Reviewer Ratings (N=3)				
Question	Lowest Quality (1)	(2)	(3)	(4)	Highest Quality (5)
1. Rate the guideline development methods.			1	1	1
2. Rate the guideline presentation.			1	1	1
3. Rate the guideline recommendations.			1	1	1
4. Rate the completeness of reporting.				2	1
5. Does this document provide sufficient information to inform your decisions? If not, what areas are missing?		1		1	1
6. Rate the overall quality of the guideline report.			1	1	1
	Strongly Disagree (1)	(2)	Neutral (3)	(4)	Strongly Agree (5)
7. I would make use of this guideline in my professional decisions.			1	1	1
8. I would recommend this guideline for use in practice.			1	1	1

and/or associated with a high level of when scrutinized properly. Timely access to MRIs and subsequent is a barrier. In addition, the need for follow-up MRIs for benign biops deterrent. Outlining very specific and clear be MRI in specific populations (i.e., lob help enable the guidelines. My concern is that if the evidence trend toward positive impact, this m in an unnecessary increase in MRIs in who may not otherwise benefit from This guideline is needed and in kee current practice.
--

Table 5-5. Summary of the Working Group's responses to comments from targeted peer reviewers.

Comments	Responses
Guideline Development: All the items were taken into account and addressed properly. The development is sound with appropriate stakeholders. Good language around alternatives, risks, etc. Good discussion of evidence and recommendations. Strong approach. The guideline process is clear, complete, and well-analyzed.	Thank you for the comments.
In Section 2: Guideline Recommendation and Evidence - Implementation Consideration:	A discussion of abbreviated or shortened MRI has been added under technical considerations.
I wonder why accelerated or shortened MRI was listed only under the Research section when many studies in the literature highlight its advantages and contribution to decreasing the cost of standard MRI protocols and increasing MRI's availability. I would add a section on the benefit of considering shortened MRI protocols with a few references.	
Under the section of Interpretation and Conclusion: In the last paragraph, I would add in the summary that preoperative MRI has a positive impact on patients with certain characteristics among them ILC histology in addition to the other factors listed.	The report indicates "As seen in the forest plots and the above summary, the evidence for benefit of preoperative MRI is stronger for ILC than for the overall data" and gives some additional details.
What about the age of occurrence of breast cancer? Would the young age at onset of breast cancer be one of the indications for preoperative MRI? (Although, young age may indirectly assume dense breasts	We did not find evidence that young patients should preferentially have MRI as part of breast cancer staging. Dense breasts at any age (and more common at younger age) are a risk factor

nonetheless, I think it deserves to be mentioned under for cancer and a risk factor for underdiagnosis the indications). by mammography. Some younger patients may be eligible for high-risk screening programs and have had screening MRI that led to the initial diagnosis. Patients values and preferences may differ according to age, and should be part of the joint decision making. In the summary, I would highlight more the benefits We have removed those without statistically that were associated with a high and moderate level of significant results. Only recurrence and certainty and keep those with a low level of certainty contralateral cancer (plus margins in higher in the results section so that the former ones do not quality studies) have moderate-high certainty. get diluted with the latter. While mastectomy rates and reoperations have less certainty, we believe the consistency of all outcomes strengthens the evidence. Recommendation 1 is dense. Perhaps the key evidence Headings have been added to categorize types section could be organized further into sub-sections of outcomes. with headings for ease of identifying the relevant evidence - i.e., recurrence and survival outcomes, surgical planning, positive margins/reoperations, etc. Recommendation 1 is very broad and some of the We have removed DFS/RFS outcomes from the benefits seem to be overstated. One could look at a lot key evidence. We have removed margin status of the results and come to the opposite conclusion that overall and only kept the subgroup data for the evidence is weak, with many studies demonstrating higher quality studies. The remaining no significant difference between preoperative MRI outcomes all indicate benefit for preoperative and no MRI and therefore preoperative MRI should be MRI. It is a judgement call as to whether these considered in very few patients (i.e., only lobular). I are clinically significant, and different patients understand the intention to draw attention to the may reach different conclusions. trend toward some benefits (i.e., reduction in positive We believe the evidence is clear for margins, reoperations) but I feel there could be more synchronous CBC, and this on its own could be definitive statements for certain aspects or patient considered justification for MRI in all patients; populations (i.e., synchronous CBCs, patients with however, we realize not all physicians would dense breasts, etc). have the same view. I do not feel convinced that MRIs are useful overall Data from each of the primary studies is when looking at the forest plots and then reading the provided in the systematic review and may be statements (and I actually use MRIs guite often in the more useful for some readers. preoperative setting) In the local recurrence + distant (+/- contralateral) Metachronous contralateral breast cancer is recurrence; why is CBC included in this? Are these included because that is how several of the publications confirmed metastases in the contralateral breast? I defined total recurrence. understand the data is not duplicated but this is a bit Contralateral cancer could be either metastasis confusing. or new cancers and no distinction was usually made. Similarly, there was no attempt to determine whether new cancer in the ipsilateral breast was recurrence or a new cancer. Some data on the average number of recalls and In this review of preoperative MRI (as opposed additional follow up MRIs (i.e., 6-month, 12-month, to use in screening), the focus was on the influence of MRI on the immediate surgery. etc.) could be included to give more context to the harms/risks section. Patterns of follow-up due to suspicious but not

biopsied lesions were not commonly reported.

Figure 4-4a is confusing - the HR is >1 but the horizontal axis label suggests that the Control (no MRI) is better.	Thank you for noticing this. This was an error and the axis labels have been corrected.
I needed more clarity about what "initial mastectomy" versus "final mastectomy" as outcomes are and their clinical significance/impact.	Initial mastectomy is mastectomy in the initial operation, whereas final mastectomy is the outcome after any reoperations generally due to positive margins or addition disease detected on final pathology. It would not include subsequent mastectomy due to recurrence.
I think this is an important guideline to have as there is a lot of variability in preop MRI use, but it is not as definitive as I was hoping for in terms of which specific patients or clinical scenarios would benefit most from preoperative MRI.	This is a limitation of the data available.
There is a comment at the end of the Justification for Recommendation 1, that states, "Mastectomy rates, while of interest, were therefore not considered a critical outcome in deriving this recommendation." This statement seems a little dismissive of the significance of patient centred outcomes associated with the long-term deformity of mastectomy. Would suggest removing. Does not add value to the justification.	This terminology has specific meaning in the guideline development field, but appreciate the comment that it might not be clear to the reader and have deleted it.
Consider adding a comment about lack of sensitivity for lymph node evaluation with MRI.	Lymph node evaluation depends on the equipment and field of observation. Using specific protocols, MRI is very sensitive; breast MRI is generally not optimized for this. This is noted under Other Considerations in the systematic review (1).
Consider commenting on patients undergoing neoadjuvant chemotherapy, utilization for pre- and post-treatment for surgical planning.	Under Other Comments we noted "Several other applications of breast MRI are generally accepted but outside the scope of the current work. This includes breast cancer screening, use prior to definitive diagnosis in cases with diagnostic uncertainty, occult breast cancer, or Paget disease of the breast. MRI or other advanced imaging may be used to localize the tumour prior to and following neoadjuvant therapy and to monitor response during treatment."

Professional Consultation

Feedback was obtained through a brief online survey of healthcare professionals and other stakeholders who are the intended users of the guideline. The list for professional consultation included professionals in Ontario marked as active in the PEBC database not already involved in the project and who a) had indicated an interest in breast cancer, or b) were surgeons and radiologists who had not indicated a particular area of specialty. Imaging Leads for the Ontario Breast Screening Program were also contacted in advance, and those who agreed to participate were included in professional consultation.

Of 321 professionals contacted, 61 responses were received (19%). Twenty stated that they did not have interest in this area or were unavailable to review this guideline at the time.

The results of the feedback survey from 41 people are summarized in Table 5-6. The main comments from the consultation and the Working Group's responses are summarized in Table 5-7.

Table 5-6. Responses to four items on the professional consultation survey.

	Reviewer Ratings (N=41)					
General Questions: Overall Guideline Assessment	Lowest Quality (1)	(2)	(3)	(4)	Highest Quality (5)	
. Rate the overall quality of the guideline report.	()	,	7	19	15	
. I would make use of this guideline	Strongly Disagree (1)	(2)	(3)	(4) 15	Strongly Agree (5) 17	
in my professional decisions.I would recommend this guideline for use in practice.	1	1	5	17	17	
. What are the barriers or enablers to the implementation of this guideline report?	 Possible of zones"; refurther constructed. Access to reconstructed. Increase in time/resoner. Quality of push-back recurrence. Adverse en wrong decompost paties. Recommender most paties. Perhaps with MRI. The guide take into a sone paties. 	radiologists consideration) radiologists consideration biopsy after urgery due to results urgery due to treatment and the results urgented biopentribute to poncoplastic strong if mast in bilateral surces. It is a back by surger and mortal affects of MRI cision in surger and mortal frects of mast in surger and mortal	with expertises and with expertises of equipm MRI; lack of the MRI and following may. It surgically for the surgery for meetomies incurgery, which tem the ore limited to geons or other ity rates false negations are the mastect doing more results.	ong regions se in MRI intended its MRI-directe llow-up production the ineviterm follow- services in takes more than usual. ers who focultive cases may being only is being routine preorution decision	erpretation operation d biopsy tedures for inically table "gray up may ons and to e as any apply to g considered perative but do not ons that are	

quality of life decisions by patients . Now that oncoplastic surgery and immediate breast reconstruction is considered, MRI would be beneficial in surgical planning and may improve quality of life.

Enablers

- Good language around breast MRI being considered in consultation with the patient.
- As MRI use increases and radiologists become more familiar with reading MRI/MRI guided biopsies, the false negative rate will decrease.
- Guideline is thorough and well written.

Table 5-7. Summary of the Working Group's responses to comments from professional consultants.

Comments	Responses
Lack of MRI biopsy capability is an issue. I think this needs to be stronger. If a centre is going to do MRI then they MUST have MRI biopsy capability. It significantly increases time to first treatment (associated with worse survival outcomes) if a patient has an MRI at one centre without biopsy capability and biopsy is recommended. The patient needs to start over in another centre to have an MRI biopsy, and often requires another MRI to assess the outside MRI finding.	The section in technical issues has been reworded to address this.
Overall, I think the guideline plays down the increased biopsy rate with MRI (and increased benign biopsy rate would be interesting) and downplays the lower specificity and time to surgery and increased mastectomy rate.	It was outside the scope of the review to gather information on false positive rates; however, the first point under potential harms in Table 2-1 is an increase biopsy rates including false negatives, so do not think this is downplayed. We did state in the Introduction that "MRI specificity depends on study populations, technical methods, and criteria for interpretation. It is generally greater than 70%, and up to 97% has been reported (2). The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) Atlas (cited in (72)) sets a benchmark for specificity in screening MRI as 85% to 90%." If centres are achieving this benchmark, then specificity is as high as for mammography, and much better in patients with dense breasts (see Recommendation 3).
	The potential delays due to MRI are mentioned several times. These are primarily system issues as opposed to intrinsic issues and may vary from a few days to several months.
	High mastectomy rates, as illustrated by the extremely wide range among different institutions, are less due to disease factors, and more influenced by physician and institutional factors and patient

preferences. We reported a final mastectomy rate of 41.8% with MRI versus 37.6% without. In Recommendation 1 there are a number of While we did not comment on statistical significance strong statements about RFS and DFS but the in the document, we recognize "use of MRI confidence intervals cross 1 (0.53 to 1.12), associated..." may be overstating the results. We which I thought made the finding nonhave removed RFS/DFS from Key Evidence. significant. Same for use of MRI and reducing For positive margins, we have removed overall data positive margin (0.74 to 1.06). If I have from the Key Evidence but kept the subgroup data for interpreted the statistics correctly, I thought which OR=0.57, 95% CI=0.36 to 0.89). this meant this was a non-significant finding. The use of MRI is associated with an improvement in RFS or DFS: HR 0.77 (95% CI 0.53 to 1.12). One cannot make this claim with these data. Similarly, the use of MRI is associated with a reduction in the rate of positive margins HR 0.89 (95% CI 0.74 to 1.06). One cannot make a definitive claim of benefit here either. I think this is an area of heterogeneous study This is addressed in the systematic review (1). quality that is not adequately addressed by Specifically, RCTs and the guideline. observational studies are afforded similar weight (at least based on relative sample sizes). I am concerned by the rigour of the meta-analysis and whether the data reported can be trusted. Non-significant effects (e.g., recurrence risk) As suggested in the Cochrane Handbook, we have are incorrectly reported as significant. avoided statements of significance. However, recurrence results (HR=0.77, 95% CI=0.65 to 0.90) would be statistically significant. I am unsure where HRs for recurrence have Most HRs are as reported in the publications. For a been extracted from. Specifically, in the small number of RCTs (including the Turku study) or Turku study, I am not aware of a time to event studies with propensity score matching, other analysis for recurrence risk. Similarly, the reported data was entered in RevMan which then POMB study did not report these data to my calculated HRs. The 2021 publication of the POMB trial mentioned in Section 4 (106) reported rates and knowledge. HRs for locoregional recurrence, distant recurrence, contralateral recurrence, any recurrence, any event (DFS) death (OS), and breast cancer deaths. There was also little mention of the effect of We have no information to indicate that age is an age on MRI studies. For example, in the POMB independent factor determining whether MRI is of study (which is one of the larger RCTs), all benefit. Age may be associated with comorbidities, patients were 56 years of age or younger. suitability of any or specific surgeries, life expectancy, menopausal status, hereditary cancers, Benefit for patients older than 75 years is breast density, patient preferences for BCS, effect of unclear for me. surgery on quality of life, acceptable risk of recurrence, etc., While we required age status menopausal to be a factor matching/adjusting the MRI and no MRI groups, we are not aware of studies comparing MRI versus no MRI and reporting relative benefits of MRI according to age.

These factors could be part of the consideration as to whether MRI is appropriate for a specific patient.

This is an excellent guideline. I rated it 4 because it does not address the research question which includes effects on use of radiation and systemic therapy. This should be mentioned somewhere, I think. I know the title is preoperative MRI but then the research question should be different or at least say why these issues were not included in the guideline.

The research question for the literature review (see Section 4 or previous publication (1) included effects on radiation and systemic therapy. Studies which met the inclusion criteria did not provide sufficient information to make specific recommendations, and therefore radiation and systemic therapy were not part of the guideline objective (see Section 2). An additional statement under limitations has been added.

As well the breast pathway has no link and is not defined. Users of the guideline may not be aware a pathway exists as it is not advertised or published in any journals A link has been added.

I do not think the guideline should be implemented as I do not agree with it. As written, it makes preoperative MRI the default, asking surgeons to consider it in ALL cases and then decide in which specific cases not to perform it. The default should be to NOT perform MRI and then choose to do it in specific cases, for example in which the extent of disease is difficult to assess and the surgeon is uncertain whether the disease is resectable (e.g., invading chest wall) or whether breast conserving therapy is possible (e.g., lobular cancer). Besides the fact that overuse of MRI is a waste of a valuable, costly resource in a very cash-strapped system, there are many downstream negative effects for the patient.

It makes consideration about MRI the default. That is not the same as making use of MRI the default. We disagree the default should be to not perform MRI.

We have acknowledged that resource limitations are a concern. While outside the scope of this work, there are studies suggesting preoperative MRI is cost effective.

There are both potentially positive and negative effects for the patient, as outlined in Table 2-1. We have clearly stated in the recommendations that "the ensuing decision of whether to conduct MRI should be made in consultation with the patient and must take into account the balance of benefits and risks and patient preferences".

The false positive rate leads to unnecessary unilateral and bilateral mastectomies as well as the need for follow-up MRIs for at least an additional two years. And preoperative MRI leads to overdiagnosis of ipsilateral and contralateral cancers as the incidence of these cancers far exceeds the incidence of these cancers over the following years in the absence of MRI (many of these cancers are likely cured by current systemic treatments and radiation).

It is essential that no change in management occurs due to additional lesions without confirmation by biopsy. Except in studies that did not follow this requirement, evidence reviewed did not indicate that MRI leads to overdiagnosis. The document does not suggest the need for additional follow-up due to MRI, and follow-up requirements after surgery for breast cancer was not a part of this guideline.

This guideline reads like it was driven by radiology special interest groups rather than clinicians who actually deal with patients and their decision-making. I see patients who remain anxious for years because their preoperative MRI showed lots of 'stuff' that cannot all be biopsied, and they then want MRI screening to be done in perpetuity.

This would be most appropriately addressed as part of the joint and informed decision of whether to conduct MRI (see risks and benefits in Table 2-1), as well as the decision whether to have mastectomy or breast-conserving surgery. Furthermore, the decision for surveillance imaging should be a shared process between the patient and the healthcare provider.

I would avoid the statement "too large for the This change has been made. MR" - maybe a softer wording "MR does not accommodate body habitus" or something else The percentage is not clear. We have declared in In Recommendation 3, MRI is recommended to identify additional lesions in women with Recommendation 3 that there is limited evidence, dense breasts. It would be helpful if there and the recommendations are based on expert could be some quantification to this opinion. MRI has been shown to reduce interval recommendation (i.e., what percentage cancer rates in women with dense breasts (DENSE trial) compared to mammography. This and other dense breast tissue should trigger MRI). studies would lend support to the panel recommending MRI on this basis. Why are there blank cells in Table 4-2b and RCTs were evaluated in Table 4-1 and therefore only others? summary data for RCTs is included in Table 4-2. A footnote to this effect has been added to the table. I think another important endpoint is We have reported this but chose not to emphasize mastectomy rate with and without MRI and this, as additional factors also contribute to the this should be emphasized in summary decision of whether to have a mastectomy. comments as well. was interested in the statement of Publications of studies using multiple readers for the "performance depends on the equipment and same MRI output have found differences in sensitivity MRI techniques used and expertise of those and specificity among readers. conducting the analysis". The latter comment regarding expertise is interesting from a pathology point of view. As a breast pathologist, I often find that there are overcalls in breast MRI and we are forced in pathology to hunt down many lesions described on MRI that turn out to be benign/inconsequential (this takes considerable pathology resources). sometimes wonder if this is related to whether the radiologist reading the breast MRI has fellowship experience or not. I realize that not everyone can be expected to have this experience, but I wonder about how the specificity of the test is influenced by one's experience/criteria for interpretation. It would be helpful to include a definition of The systematic review indicates that conversion some terms, e.g., is there a time limit after mastectomy occurs when patients had an initial BCS, an initial surgery to qualify as a conversion but due to reasons such as positive margins or detection of additional tumours, a subsequent mastectomy? mastectomy was performed. It would not include Also, what is the time threshold between reoperation for recurrence or additional cancers synchronous and metachronous additional detected on follow-up. breast cancer cases? The systematic review notes that synchronous cancers are those occurring and detected at the same time, and that some publications include contralateral cancer detected within six months as synchronous. In our centre, patients with newly diagnosed This was outside the scope but mentioned briefly in breast cancer routinely have a contrast the systematic review as well as qualifying statements

mammography. What is the advantage of an MRI over contrast mammography?	in Recommendation 1. MRI has the advantage of not using radiation.
Growing rate of use of contrast-enhanced mammography should promote developing future guidelines regarding the use of contrast enhanced mammography preoperatively.	
I completely agree that preoperative MRI brings lots of benefit for patient with ILC and multifocal tumours.	
It would be extremely useful to develop guidelines for MRI screening in patients with dense breasts (maybe with abbreviated protocols). This would be preferable to ultrasound screening.	
There is also a need for guidance on the use of MRI in the follow up/surveillance of people with previously treated breast cancer	
Would like to see recommendations regarding extensive cases of DCIS.	

CONCLUSION

The final guideline recommendations contained in Section 2 and summarized in Section 1 reflect the integration of feedback obtained through the external review processes with the document as drafted by the GDG Working Group and approved by the GDG Expert Panel and the PEBC Report Approval Panel.

References

- 2. Mann RM, Kuhl CK, Moy L. Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imaging. 2019;50(2):377-90.
- 3. Panu N, Lacchetti C, Spithoff K, Kellett S, Hamm C, and the Preoperative Breast MRI Expert Panel. The role of breast MRI in the preoperative staging of breast cancer. Program in Evidence-Based Care guideline No.: 27-1. Hamilton (ON): Program in Evidence-Based Care, McMaster University; 2015, May 29. [internal document, unpublished].
- 4. Schoub PK. Understanding indications and defining guidelines for breast magnetic resonance imaging. SA J Radiol. 2018;22(2):a1353 (12 pp).
- 5. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology. 2001;220(1):13-30.
- 6. Lehman CD. Magnetic resonance imaging in the evaluation of ductal carcinoma in situ. J Natl Cancer Inst Monogr. 2010;2010(41):150-1.
- 7. Warner E, Causer PA, Wong JW, Wright FC, Jong RA, Hill KA, et al. Improvement in DCIS detection rates by MRI over time in a high-risk breast screening study. Breast J. 2011;17(1):9-17.
- 8. Kuhl CK, Schrading S, Bieling HB, Wardelmann E, Leutner CC, Koenig R, et al. MRI for diagnosis of pure ductal carcinoma in situ: A prospective observational study. Lancet. 2007;370(9586):485-92.
- 9. Sickles EA, D'Orsi CJ. ACR BI-RADS® atlas Follow-up and outcome monitoring. Section II. The basic clinically relevant audit. In: D'Orsi CJ, Sickles EA, Mendelson EB, Morris EA, editors. ACR BI-RADS® atlas. 5th ed. Reston, VA: American College of Radiology; 2013 [modified 2014 Feb 5; mccessed 2023 Jan 12]. Available at: www.acr.org/-/media/ACR/Files/RADS/BI-RADS/FUOM-Basic-Audit.pdf; https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads#FollowUpandMonitoring.
- 10. Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401-6.
- 11. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach (updated October 2013). GRADE Working Group, 2013. Available from: https://gdt.gradepro.org/app/handbook/handbook.html 2013.

- 12. Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B, et al. GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol. 2020;119:126-35.
- 13. Brennan ME, Houssami N, Lord S, Macaskill P, Irwig L, Dixon JM, et al. Magnetic resonance imaging screening of the contralateral breast in women with newly diagnosed breast cancer: Systematic review and meta-analysis of incremental cancer detection and impact on surgical management. J Clin Oncol. 2009;27(33):5640-9.
- 14. Chiarelli AM, Blackmore KM, Muradali D, Done SJ, Majpruz V, Weerasinghe A, et al. Performance measures of magnetic resonance imaging plus mammography in the High Risk Ontario Breast Screening Program. J Natl Cancer Inst. 2020;112(2):136-44.
- 15. Goodman S, Mango V, Friedlander L, Desperito E, Wynn R, Ha R. Are mammographically occult additional tumors identified more than 2 cm away from the primary breast cancer on MRI clinically significant? Acad Radiol. 2019;26(4):502-7.
- 16. Iacconi C, Galman L, Zheng J, Sacchini V, Sutton EJ, Dershaw D, et al. Multicentric cancer detected at breast MR imaging and not at mammography: Important or not? Radiology. 2016;279(2):378-84.
- 17. Appavoo S, Aldis A, Causer P, Crystal P, Kornecki A, Mundt Y, et al. CAR practice guidelines and technical standards for breast imaging and intervention [Internet]. Ottawa: Canadian Association of Radiologists; 2012 Sept 29 [modified 2016 Sept 17; cited 2020 Mar 17]. Available from: https://car.ca/book/breast-imaging-guidelines/.
- 18. Mann RM, Balleyguier C, Baltzer PA, Bick U, Colin C, Cornford E, et al. Breast MRI: EUSOBI recommendations for women's information. Eur Radiol. 2015;25(12):3669-78.
- 19. Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: Guidelines from the European Society of Breast Imaging. Eur Radiol. 2008;18(7):1307-18.
- 20. Blue Shield of California. 6.01.29 Magnetic resonance imaging for detection and diagnosis of breast cancer [Internet]. Oakland (CA): Blue Shield of California; 2020 Nov 1 [cited 2021 Feb 9]. Available from: https://www.blueshieldca.com/bsca/bsc/public/common/PortalComponents/provider/StreamDocumentServlet?fileName=PRV_MRI_Breast.pdf.
- 21. Blue Cross Blue Shield Association. 6.01.29 Magnetic resonance imaging for detection and diagnosis of breast cancer [Internet]. Chicago (IL): Blue Cross and Blue Shield Association, Technology Evaluation Center; 2019 Oct [cited 2019 Oct 31]. Available from: https://www.evidencepositioningsystem.com/BCBSA/html/pol_6.01.29.html.
- 22. Lobbes MB, Vriens IJ, van Bommel AC, Nieuwenhuijzen GA, Smidt ML, Boersma LJ, et al. Breast MRI increases the number of mastectomies for ductal cancers, but decreases them for lobular cancers. Breast Cancer Res Treat. 2017;162(2):353-64.
- 23. Mann RM, Hoogeveen YL, Blickman JG, Boetes C. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: A review of existing literature. Breast Cancer Res Treat. 2008;107(1):1-14.

- 24. Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert FJ, et al. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group. Eur J Cancer. 2010;46(8):1296-316.
- 25. Institut national d'excellence en santé et en services sociaux (INESSS). Main indications for breast MRI in the context of investigation and planning of breast cancer treatment [Internet]. Québec (Québec): INESS; 2018 [cited 2021 Mar 26]. Available from: https://www.inesss.qc.ca/fileadmin/doc/INESSS/Rapports/Oncologie/IRM_sein/IRM_Cancer-du-sein_EN_VF.pdf
- 26. The Royal College of Radiologists. Guidance on screening and symptomatic breast imaging. Fourth edition. Ref No. BFCR(19)9 [Internet]. London: The Royal College of Radiologists; 2019 [corrected 2019 Nov 29; cited 2021 Mar 26]. Available from: https://www.rcr.ac.uk/publication/guidance-screening-and-symptomatic-breast-imaging-fourth-edition.
- 27. Biglia N, Maggiorotto F, Liberale V, Bounous VE, Sgro LG, Pecchio S, et al. Clinical-pathologic features, long term-outcome and surgical treatment in a large series of patients with invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC). Eur J Surg Oncol. 2013;39(5):455-60.
- 28. Derias M, Subramanian A, Allan S, Shah E, Teraifi HE, Howlett D. The Role of Magnetic Resonance Imaging in the Investigation and Management of Invasive Lobular Carcinoma-A 3-Year Retrospective Study in Two District General Hospitals. Breast J. 2016;22(4):384-9.
- 29. Dillon MF, Hill AD, Fleming FJ, O'Doherty A, Quinn CM, McDermott EW, et al. Identifying patients at risk of compromised margins following breast conservation for lobular carcinoma. Am J Surg. 2006;191(2):201-5.
- 30. Yeatman TJ, Cantor AB, Smith TJ, Smith SK, Reintgen DS, Miller MS, et al. Tumor biology of infiltrating lobular carcinoma. Implications for management. Ann Surg. 1995;222(4):549-59; discussion 59-61.
- 31. Krecke KN, Gisvold JJ. Invasive lobular carcinoma of the breast: mammographic findings and extent of disease at diagnosis in 184 patients. AJR Am J Roentgenol. 1993;161(5):957-60.
- 32. Veltman J, Boetes C, van Die L, Bult P, Blickman JG, Barentsz JO. Mammographic detection and staging of invasive lobular carcinoma. Clin Imaging. 2006;30(2):94-8.
- 33. Eastern Health Breast Disease Site Group. Indications for use of breast magnetic resonance imaging [Internet]. St. John's (Nfld): Eastern Health; revised 2017 Aug 31 [cited 2021 Mar 26]. Available from: https://cancercare.easternhealth.ca/health-care-professionals/guidelines/breast-cancer/.
- 34. Ditsch N, Untch M, Thill M, Muller V, Janni W, Albert US, et al. AGO recommendations for the diagnosis and treatment of patients with early breast cancer: Update 2019. Breast Care. 2019;14(4):224-45.

- 35. Sardanelli F, Newstead GM, Putz B, Jirakova Trnkova Z, Trimboli RM, Abe H, et al. Gadobutrol-enhanced magnetic resonance imaging of the breast in the preoperative setting: Results of 2 prospective international multicenter phase III studies. Invest Radiol. 2016;51(7):454-61.
- 36. Seely JM, Lamb L, Malik N, Lau J. The yield of pre-operative breast MRI in patients according to breast tissue density. Eur Radiol. 2016;26(9):3280-9.
- 37. Bakker MF, de Lange SV, Pijnappel RM, Mann RM, Peeters PHM, Monninkhof EM, et al. Supplemental MRI screening for women with extremely dense breast tissue. N Engl J Med. 2019;381(22):2091-102.
- 38. Klinkenbijl JHG, van Leeuwen E, Verkooijen HM. Wat zeggen de uitkomsten van de DENSEstudie? [Dutch]. [What do the results of the DENSE-trial tell?] [Commentary]. Ned Tijdschr Geneeskd. 2020;164(04):D4822.
- 39. Franz HBG. Profitieren frauen mit extrem dichtem brustgewebe von zusatzlicher MRT? [German]. [Do women with extremely dense breast tissue benefit from supplemental MRI?]. Geburtshilfe Frauenheilkd. 2020;80(5):460-2.
- 40. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159-69.
- 41. Samreen N, Lee C, Bhatt A, Carter J, Hieken T, Adler K, et al. A Clinical Approach to Diffusion-Weighted Magnetic Resonance Imaging in Evaluating Chest Wall Invasion of Breast Tumors. J Clin Imaging Sci. 2019;9:11.
- 42. Myers KS, Stern E, Ambinder EB, Oluyemi ET. Breast cancer abutting the pectoralis major muscle on breast MRI: what are the clinical implications? Br J Radiol. 2021;94(1119):20201202.
- 43. Kazama T, Nakamura S, Doi O, Suzuki K, Hirose M, Ito H. Prospective evaluation of pectoralis muscle invasion of breast cancer by MR imaging. Breast Cancer. 2005;12(4):312-6.
- 44. Morris EA, Schwartz LH, Drotman MB, Kim SJ, Tan LK, Liberman L, et al. Evaluation of pectoralis major muscle in patients with posterior breast tumors on breast MR images: early experience. Radiology. 2000;214(1):67-72.
- 45. Pukancsik D, Kelemen P, Ujhelyi M, Kovacs E, Udvarhelyi N, Meszaros N, et al. Objective decision making between conventional and oncoplastic breast-conserving surgery or mastectomy: An aesthetic and functional prospective cohort study. Eur J Surg Oncol. 2017;43(2):303-10.
- 46. Silverstein MJ, Savalia N, Khan S, Ryan J. Extreme oncoplasty: Breast conservation for patients who need mastectomy. Breast J. 2015;21(1):52-9.
- 47. Tousimis E, Haslinger M. Overview of indications for nipple sparing mastectomy. Gland Surg. 2018;7(3):288-300.

- 48. Piato JR, de Andrade RD, Chala LF, de Barros N, Mano MS, Melitto AS, et al. MRI to predict nipple involvement in breast cancer patients. AJR Am J Roentgenol. 2016;206(5):1124-30.
- 49. Yamashita Y, Hayashi N, Nagura N, Kajiura Y, Yoshida A, Takei J, et al. Long-term oncologic safety of nipple-sparing mastectomy with immediate reconstruction [Abstract]. Cancer Res. 2019;79(4 Suppl 1).
- 50. Koike-Shimo A, Tsugawa K, Kawamoto H, Kanemaki Y, Maeda I. Oncologic outcome and technical consideration of nipple-sparing mastectomy in breast cancer: The St. Marianna experience with 384 patients [Abstract]. J Clin Oncol. 2014;32(15 Suppl 1):Abstract e12024.
- 51. del Riego J, Pitarch M, Codina C, Nebot L, Andreu FJ, Aparicio O, et al. Multimodality approach to the nipple-areolar complex: A pictorial review and diagnostic algorithm. Insights Imaging. 2020;11:89 (27 pp).
- 52. Ponzone R, Maggiorotto F, Carabalona S, Rivolin A, Pisacane A, Kubatzki F, et al. MRI and intraoperative pathology to predict nipple-areola complex (NAC) involvement in patients undergoing NAC-sparing mastectomy. Eur J Cancer. 2015;51(14):1882-9.
- 53. Ryu JM, Nam SJ, Kim SW, Lee SK, Bae SY, Yi HW, et al. Feasibility of nipple-sparing mastectomy with immediate breast reconstruction in breast cancer patients with tumornipple distance less than 2.0 cm. World J Surg. 2016;40(8):2028-35.
- 54. Mariscotti G, Durando M, Houssami N, Berzovini CM, Esposito F, Fasciano M, et al. Preoperative MRI evaluation of lesion-nipple distance in breast cancer patients: Thresholds for predicting occult nipple-areola complex involvement. Clin Radiol. 2018;73(8):735-43.
- 55. Gao Y, Brachtel EF, Hernandez O, Heller SL. An analysis of nipple enhancement at breast MRI with radiologic-pathologic correlation. Radiographics. 2019;39(1):10-27.
- 56. Seki H, Sakurai T, Mizuno S, Tokuda T, Kaburagi T, Seki M, et al. A novel nipple-areola complex involvement predictive index for indicating nipple-sparing mastectomy in breast cancer patients. Breast Cancer. 2019;26:808-16.
- 57. Balci FL, Kara H, Dulgeroglu O, Uras C. Oncologic safety of nipple-sparing mastectomy in patients with short tumor-nipple distance. Breast J. 2019;25(4):612-8.
- 58. Frey JD, Salibian AA, Lee J, Harris K, Axelrod DM, Guth AA, et al. Oncologic trends, outcomes, and risk factors for locoregional recurrence: An analysis of tumor-to-nipple distance and critical factors in therapeutic nipple-sparing mastectomy. Plast Reconstr Surg. 2019;143(6):1575-85.
- 59. Liebens FP, Carly B, Pastijn A, Rozenberg S. Management of BRCA1/2 associated breast cancer: a systematic qualitative review of the state of knowledge in 2006. Eur J Cancer. 2007;43(2):238-57.
- 60. The American Society of Breast Surgeons. Consensus guideline on diagnostic and screening magnetic resonance imaging of the breast [Internet]. Columbia, MD: The

- American Society of Breast Surgeons; 2017 Jun 22 [created 2018 Jun 21; modified 2019 Feb 18; cited 2020 Mar 19]. Available from: https://www.breastsurgeons.org/docs/statements/Consensus-Guideline-on-Diagnostic-and-Screening-Magnetic-Resonance-Imaging-of-the-Breast.pdf.
- 61. American College of Radiology. ACR appropriateness criteria®: Monitoring response to neoadjuvant systemic therapy for breast cancer [Internet]. Reston (VA): American College of Radiology; 2017 [created 2019 Dec 2; cited 2021 Mar 23]. Available from: https://acsearch.acr.org/list.
- 62. American College of Radiology. Complete accreditation information: Breast MRI (Revised 12-12-19) [Internet]. Reston (VA): American College of Radiology; 2019 [revised 2020 Mar 31; cited 2021 Mar 23]. Available from: https://accreditation-information-breast-mri2020.
- 63. American College of Radiology Committee on Quality Assurance in Magnetic Resonance Imaging. Magnetic resonance imaging. Quality control manual, 2015 [Internet]. Reston (VA): American College of Radiology; 2016 May 10 [cited 2021 Mar 23]. Available from: https://www.acr.org/-/media/ACR/NOINDEX/QC-Manuals/MR_QCManual.pdf.
- 64. American College of Radiology Committee on MR Safety. ACR manual on MR safety. Version 1.0, 2020 [Internet]. Reston (VA): American College of Radiology; 2020 May 15 [cited 2021 Mar 23]. Available from: https://www.acr.org/Clinical-Resources/Radiology-Safety/MR-Safety2020.
- 65. American College of Radiology Committee on Drugs and Contrast Media. ACR manual on contrast media. 2021 [Internet]. Reston (VA): American College of Radiology; 2021 Feb 1 [cited 2021 Aug 13]. Available from: https://www.acr.org/Clinical-Resources/Contrast-Manual2021.
- 66. American College of Radiology. ACR practice parameter for the performance of magnetic resonance imaging-guided breast interventional procedures. Revised 2016 [Internet]. Reston (VA): American College of Radiology; 2016 [revised 2017 Oct 26; cited 2020 Mar 16]. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Guided-Breast.pdf?la=en.
- 67. American College of Radiology. ACR practice parameter for the performance of contrastenhanced magnetic resonance imaging (MRI) of the breast. Revised 2018 [Internet]. Reston (VA): American College of Radiology; 2018 July 1[cited 2020 Mar 16]. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Contrast-Breast.pdf?la=en.
- 68. American College of Radiology. ACR BI-RADS atlas. Breast imaging reporting and data system. 5th ed. [Internet]. Reston (VA): American College of Radiology; 2013. Available from: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads.
- 69. Amurao MR, Einstein SA, Panda A, Och JG, Pooley RA, Yanasak NE, et al. ACR-AAPM technical standard for diagnostic medical physics performance monitoring of magnetic resonance (MR) imaging equipment. Revised 2019 [Internet]. Reston (VA, USA): Americal

- College of Radiology; 2019 June 7 [cited 2019 Sep 20]. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/mr-equip.pdf?la=en.
- 70. DeMartini WB, Rahbar H. Breast magnetic resonance imaging technique at 1.5 T and 3 T: Requirements for quality imaging and American College of Radiology accreditation. Magn Reson Imaging Clin N Am. 2013;21(3):475-82.
- 71. Edwards SD, Lipson JA, Ikeda DM, Lee JM. Updates and revisions to the BI-RADS magnetic resonance imaging lexicon. Magn Reson Imaging Clin N Am. 2013;21(3):483-93.
- 72. Covington MF, Young CA, Appleton CM. American College of Radiology accreditation, performance metrics, reimbursement, and economic considerations in breast MR Imaging. Magn Reson Imaging Clin N Am. 2018;26(2):303-14.
- 73. Bick U, Trimboli RM, Athanasiou A, Balleyguier C, Baltzer PAT, Bernathova M, et al. Image-guided breast biopsy and localisation: Recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. 2020;11(1):12 (8 pp).
- 74. Rahbar H, Hanna LG, Gatsonis C, Mahoney MC, Schnall MD, DeMartini WB, et al. Contralateral prophylactic mastectomy in the American College of Radiology Imaging Network 6667 trial: Effect of breast MR imaging assessments and patient characteristics. Radiology. 2014;273(1):53-60.
- 75. DeMartini WB, Hanna L, Gatsonis C, Mahoney MC, Lehman CD. Evaluation of tissue sampling methods used for MRI-detected contralateral breast lesions in the American College of Radiology Imaging Network 6667 trial. AJR Am J Roentgenol. 2012;199(3):W386-91.
- 76. Weinstein SP, Hanna LG, Gatsonis C, Schnall MD, Rosen MA, Lehman CD. Frequency of malignancy seen in probably benign lesions at contrast-enhanced breast MR imaging: Findings from ACRIN 6667. Radiology. 2010;255(3):731-7.
- 77. Lehman CD, Gatsonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007;356(13):1295-303.
- 78. Rakow-Penner R, Murphy PM, Dale A, Ojeda-Fournier H. State of the art diffusion weighted imaging in the breast: Recommended protocol. Curr Radiol Rep. 2017;5(3):https://doi.org/10.1007/s40134-017-0195-y.
- 79. Nessim C, Winocour J, Holloway DP, Saskin R, Holloway CM. Wait times for breast cancer surgery: Effect of magnetic resonance imaging and preoperative investigations on the diagnostic pathway. J Oncol Pract. 2015;11(2):e131-8.
- 80. Hollingsworth AB, Stough RG. Preoperative breast MRI: Barking up the wrong endpoints. Breast Dis. 2015;26(1):19-25.
- 81. Berg WA, Zhang Z, Lehrer D, Jong RA, Pisano ED, Barr RG, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to

- mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394-404.
- 82. Berg WA, Blume JD, Adams AM, Jong RA, Barr RG, Lehrer DE, et al. Reasons women at elevated risk of breast cancer refuse breast MR imaging screening: ACRIN 6666. Radiology. 2010;254(1):79-87.
- 83. Kuhl C, Weigel S, Schrading S, Arand B, Bieling H, Konig R, et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol. 2010;28(9):1450-7.
- 84. Mann RM, Cho N, Moy L. Breast MRI: State of the Art. Radiology. 2019;292(3):520-36.
- 85. Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast Cancer Screening in Women at Higher-Than-Average Risk: Recommendations From the ACR. J Am Coll Radiol. 2018;15(3 Pt A):408-14.
- 86. Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB. Abbreviated breast Magnetic Resonance Imaging (MRI): First postcontrast subtracted images and maximum-intensity projection A novel approach to breast cancer screening with MRI. J Clin Oncol. 2014;32(22):2304-10.
- 87. Mann RM, van Zelst JCM, Vreemann S, Mus RDM. Is Ultrafast or Abbreviated Breast MRI Ready for Prime Time? Curr Breast Cancer Rep. 2019;11(1):9-16.
- 88. Heacock L, Reig B, Lewin AA, Toth HK, Moy L, Lee CS. Abbreviated breast MRI: Road to clinical implementation. J Breast Imaging. 2020;2(3):201-14.
- 89. Hernandez ML, Osorio S, Florez K, Ospino A, Diaz GM. Abbreviated magnetic resonance imaging in breast cancer: A systematic review of literature. European Journal of Radiology Open. 2021;8:100307.
- 90. Kuhl CK. Abbreviated breast MRI for screening women with dense breast: The EA1141 trial. Br J Radiol. 2018;91(1090):20170441.
- 91. Comstock CE, Gatsonis C, Newstead GM, Snyder BS, Gareen IF, Bergin JT, et al. Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection among Women with Dense Breasts Undergoing Screening. JAMA Journal of the American Medical Association. 2020;323(8):746-56.
- 92. Kim MY, Suh YJ, An YY. Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection among Women with a History of Breast Cancer. Acad Radiol. 2022;29(10):1458-65.
- 93. Girometti R, Nitti A, Lorenzon M, Greco F, Londero V, Zuiani C. Comparison between an abbreviated and full MRI protocol for detecting additional disease when doing breast cancer staging. J Magn Reson Imaging. 2019;49(7):e222-e30.
- 94. Lee-Felker S, Joines M, Storer L, Li B, DeBruhl N, Sayre J, et al. Abbreviated Breast MRI for Estimating Extent of Disease in Newly Diagnosed Breast Cancer. J Breast Imaging. 2020;2(1):43-9.

- 95. American College of Radiology. MRI exam-specific parameters: Breast [revised 11-11-2022; modified 2023 Jan 13]. In: Complete accreditation information: MRI and Breast MRI (Revised 12-16-2022) [Internet]. Reston (VA): American College of Radiology; 2022 [cited 2023 Feb 14]. Available from: https://accreditationsupport.acr.org/support/solutions/folders/110000122612022.
- 96. Choudhery S, Chou SHS, Chang K, Kalpathy-Cramer J, Lehman CD. Kinetic Analysis of Lesions Identified on a Rapid Abridged Multiphase (RAMP) Breast MRI Protocol. Acad Radiol. 2020;27(5):672-81.
- 97. Browman GP, Newman TE, Mohide EA, Graham ID, Levine MN, Pritchard KI, et al. Progress of clinical oncology guidelines development using the Practice Guidelines Development Cycle: the role of practitioner feedback. J Clin Oncol. 1998;16(3):1226-31.
- 98. Browman GP, Levine MN, Mohide EA, Hayward RS, Pritchard KI, Gafni A, et al. The practice guidelines development cycle: a conceptual tool for practice guidelines development and implementation. J Clin Oncol. 1995;13(2):502-12.
- 99. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010;182(18):E839-42.
- 100. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane handbook for systematic reviews of interventions version 6.1 [Internet]. London (UK): Cochrane; 2020 Sept [cited 2021 Aug 13]. Available from: https://training.cochrane.org/handbook.
- 101. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. [RoB 2 tool also available at: https://www.riskofbias.info/welcome/rob-2-0-tool].
- 102. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919 (7 pp).
- 103. Sterne J, Higgins J, Elers R, Reeves B, and the development group for ROBINS-I. Risk of bias in non-randomized studies of interventions (ROBINS-I): Detailed guidance [Internet]. Updated 2016 Oct 12. [cited 2021 Jul 16]. Available from: http://www.riskofbias.info
- 104. The Cochrane Collaboration. Review Manager (RevMan) [Computer program on internet]. Version 5.4. London (UK): Cochrane; 2020 [cited 2021 May 6]. Available from: https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman/revman-5-download.
- 105. McMaster University, Evidence Prime. GRADEpro GDT: GRADEpro Guideline Development Tool [Software] Hamilton (ON): McMaster University and Evidence Prime 2022 (accessed July 2022) Available from: https://www.gradeproorg/.
- 106. Gonzalez V, Arver B, Löfgren L, Bergkvist L, Sandelin K, Eriksson S. Impact of preoperative breast MRI on 10-year survival of patients included in the Swedish randomized multicentre POMB trial. BJS Open. 2021;5(5):zrab088.

- 107. Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: A randomised controlled trial. Lancet. 2010;375(9714):563-71.
- 108. Peters NH, van Esser S, van den Bosch MA, Storm RK, Plaisier PW, van Dalen T, et al. Preoperative MRI and surgical management in patients with nonpalpable breast cancer: The MONET randomised controlled trial. Eur J Cancer. 2011;47(6):879-86.
- 109. Vos EL, Voogd AC, Verhoef C, Siesling S, Obdeijn IM, Koppert LB. Benefits of preoperative MRI in breast cancer surgery studied in a large population-based cancer registry. Br J Surg. 2015;102(13):1649-57.
- 110. Sardanelli F, Trimboli RM, Houssami N, Gilbert FJ, Helbich TH, Álvarez Benito M, et al. Magnetic resonance imaging before breast cancer surgery: Results of an observational multicenter international prospective analysis (MIPA). Eur Radiol. 2022;32(3):1611-23.
- 111. Sung JS, Li J, Da Costa G, Patil S, Van Zee KJ, Dershaw DD, et al. Preoperative breast MRI for early-stage breast cancer: Effect on surgical and long-term outcomes. AJR Am J Roentgenol. 2014;202(6):1376-82.
- 112. Wang SY, Long JB, Killelea BK, Evans SB, Roberts KB, Silber AL, et al. Associations of preoperative breast magnetic resonance imaging with subsequent mastectomy and breast cancer mortality. Breast Cancer Res Treat. 2018;172(2):453-61.
- 113. Rahman RL, Khokhar MO, Day L, Larkin A, Quinlan R, Bavosi D, et al. Breast cancer staging with magnetic resonance for treatment planning (B-SMART)-a prospective randomized trial: Interim analysis [Abstract]. Ann Surg Oncol. 2012;19(2 Suppl 1):76.
- 114. Fortune-Greeley AK, Wheeler SB, Meyer AM, Reeder-Hayes KE, Biddle AK, Muss HB, et al. Preoperative breast MRI and surgical outcomes in elderly women with invasive ductal and lobular carcinoma: A population-based study. Breast Cancer Res Treat. 2014;143(1):203-12.
- 115. Davis KL, Barth RJ, Jr., Gui J, Dann E, Eisenberg B, Rosenkranz K. Use of MRI in preoperative planning for women with newly diagnosed DCIS: Risk or benefit? Ann Surg Oncol. 2012;19(10):3270-4.
- 116. Keymeulen K, Geurts SME, Lobbes MBI, Heuts EM, Duijm LEM, Kooreman LFS, et al. Population-based study of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg. 2019;106(11):1488-94.
- 117. Yoon GY, Choi WJ, Kim HH, Cha JH, Shin HJ, Chae EY. Surgical outcomes for ductal carcinoma in situ: Impact of preoperative MRI. Radiology. 2020;295(2):296-303.
- 118. Gonzalez V, Sandelin K, Karlsson A, Aberg W, Lofgren L, Iliescu G, et al. Preoperative MRI of the breast (POMB) influences primary treatment in breast cancer: A prospective, randomized, multicenter study. World J Surg. 2014;38(7):1685-93.
- 119. Katipamula R, Degnim AC, Hoskin T, Boughey JC, Loprinzi C, Grant CS, et al. Trends in mastectomy rates at the Mayo Clinic Rochester: Effect of surgical year and preoperative magnetic resonance imaging. J Clin Oncol. 2009;27(25):4082-8.

- 120. Sorbero ME, Dick AW, Beckjord EB, Ahrendt G. Diagnostic breast magnetic resonance imaging and contralateral prophylactic mastectomy. Ann Surg Oncol. 2009;16(6):1597-605.
- 121. Onega T, Weiss JE, Goodrich ME, Zhu W, DeMartini WB, Kerlikowske K, et al. Relationship between preoperative breast MRI and surgical treatment of non-metastatic breast cancer. J Surg Oncol. 2017;116(8):1008-15.
- 122. Ozanne EM, Weiss JE, Onega T, DeMartini W, Kerlikowske K, Buist DS, et al. Locoregional treatment of breast cancer in women with and without preoperative magnetic resonance imaging. Am J Surg. 2017;213(1):132-9.e2.
- 123. Goodrich ME, Weiss J, Onega T, Balch SL, Buist DS, Kerlikowske K, et al. The role of preoperative magnetic resonance imaging in the assessment and surgical treatment of interval and screen-detected breast cancer in older women. Breast J. 2016;22(6):616-22.
- 124. Heil J, Rauch G, Szabo AZ, Garcia-Etienne CA, Golatta M, Domschke C, et al. Breast cancer mastectomy trends between 2006 and 2010: Association with magnetic resonance imaging, immediate breast reconstruction, and hospital volume. Ann Surg Oncol. 2013;20(12):3839-46.
- 125. Choi WJ, Cha JH, Kim HH, Shin HJ, Chae EY, Jung KH, et al. Long-term survival outcomes of primary breast cancer in women with or without preoperative magnetic resonance imaging: A matched cohort study. Clin Oncol (R Coll Radiol). 2017;29(10):653-61.
- 126. Lai HW, Chen CJ, Lin YJ, Chen SL, Wu HK, Wu YT, et al. Does breast magnetic resonance imaging combined with conventional imaging modalities decrease the rates of surgical margin involvement and reoperation? A case-control comparative analysis. Medicine. 2016;95(22):e3810 (11 pp).
- 127. Hollingsworth AB, Stough RG, O'Dell CA, Brekke CE. Breast magnetic resonance imaging for preoperative locoregional staging. Am J Surg. 2008;196(3):389-97.
- 128. Grady I, Gorsuch-Rafferty H, Hadley P. Preoperative staging with magnetic resonance imaging, with confirmatory biopsy, improves surgical outcomes in women with breast cancer without increasing rates of mastectomy. Breast J. 2012;18(3):214-8.
- 129. Luis IV, Hughes ME, Cronin A, Rugo HS, Edge SB, Moy B, et al. Variation in the use of mastectomy (MAST) in women with small node negative breast cancer (BC) treated at US academic institutions [Abstract]. Cancer Res. 2015;75(9 Suppl 1):Abstract P2-13-03.
- 130. Parsyan A, Moldoveanu D, Balram B, Wong S, Zhang DD, Svadzian A, et al. Influence of preoperative magnetic resonance imaging on the surgical management of breast cancer patients. Am J Surg. 2016;211(6):1089-94.
- 131. Arnaout A, Catley C, Booth CM, McInnes M, Graham I, Kumar V, et al. Use of preoperative magnetic resonance imaging for breast cancer: A Canadian population-based study. JAMA Oncol. 2015;1(9):1238-50.

- 132. Kapoor NS, Eaton A, King TA, Patil S, Stempel M, Morris E, et al. Should breast density influence patient selection for breast-conserving surgery? Ann Surg Oncol. 2013;20(2):600-6.
- 133. Killelea BK, Long JB, Chagpar AB, Ma X, Soulos PR, Ross JS, et al. Trends and clinical implications of preoperative breast MRI in Medicare beneficiaries with breast cancer. Breast Cancer Res Treat. 2013;141(1):155-63.
- 134. Vriens IJH, Keymeulen K, Lobbes MBI, van Bommel ACM, Nieuwenhuijzen GAP, Smidt ML, et al. Breast magnetic resonance imaging use in patients undergoing neoadjuvant chemotherapy is associated with less mastectomies in large ductal cancers but not in lobular cancers. Eur J Cancer. 2017;81:74-80.
- 135. Mann RM, Loo CE, Wobbes T, Bult P, Barentsz JO, Gilhuijs KG, et al. The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat. 2010;119(2):415-22.
- 136. Ha SM, Chae EY, Cha JH, Kim HH, Shin HJ, Choi WJ. Breast MR imaging before surgery: Outcomes in patients with invasive lobular carcinoma by using propensity score matching. Radiology. 2018;287(3):771-7.
- 137. Ha SM, Chae EY, Cha JH, Kim HH, Shin HJ, Choi WJ. Long-term survival outcomes in invasive lobular carcinoma patients with and without preoperative MR imaging: A matched cohort study. Eur Radiol. 2019;29(5):2526-34.
- 138. Balleyguier C, Dunant A, Ceugnart L, Kandel M, Chauvet MP, Cherel P, et al. Preoperative breast magnetic resonance imaging in women with local ductal carcinoma in situ to optimize surgical outcomes: Results from the randomized phase III Trial IRCIS. J Clin Oncol. 2019;37(11):885-92.
- 139. Mota BS, Reis YN, Doria MT, Ricci MD, Shimizu C, Ferreira V, et al. Brazilian randomized study: Impact of preoperative magnetic resonance in the evaluation for breast cancer conservative surgery (BREAST-MRI Trial) [Abstract]. Ann Oncol. 2019;30(Suppl 3):iii39-iii40.
- 140. Turnbull LW, Brown SR, Olivier C, Harvey I, Brown J, Drew P, et al. Multicentre randomised controlled trial examining the cost-effectiveness of contrast-enhanced high field magnetic resonance imaging in women with primary breast cancer scheduled for wide local excision (COMICE). Health Technol Assess. 2010;14(1):1-182.
- 141. Brück N, Koskivuo I, Bostrom P, Saunavaara J, Aaltonen R, Parkkola R. Preoperative magnetic resonance imaging in patients with stage I invasive ductal breast cancer: A prospective randomized study. Scand J Surg. 2018;107(1):14-22.
- 142. Feigelson HS, James TA, Single RM, Onitilo AA, Aiello Bowles EJ, Barney T, et al. Factors associated with the frequency of initial total mastectomy: Results of a multi-institutional study. J Am Coll Surg. 2013;216(5):966-75.
- 143. Wang SY, Kuntz KM, Tuttle TM, Jacobs DR, Jr., Kane RL, Virnig BA. The association of preoperative breast magnetic resonance imaging and multiple breast surgeries among

- older women with early stage breast cancer. Breast Cancer Res Treat. 2013;138(1):137-47.
- 144. Zeng Z, Amin A, Roy A, Pulliam NE, Karavites LC, Espino S, et al. Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer patients. NPJ Breast Cancer. 2020;6:49 (8 pp).
- 145. Obdeijn IM, Tilanus-Linthorst MM, Spronk S, van Deurzen CH, de Monye C, Hunink MG, et al. Preoperative breast MRI can reduce the rate of tumor-positive resection margins and reoperations in patients undergoing breast-conserving surgery. AJR Am J Roentgenol. 2013;200(2):304-10.
- 146. Chandwani S, George PA, Azu M, Bandera EV, Ambrosone CB, Rhoads GG, et al. Role of preoperative magnetic resonance imaging in the surgical management of early-stage breast cancer. Ann Surg Oncol. 2014;21(11):3473-80.
- 147. Burkbauer L, Goldbach M, Malinovitch A, Keele L, Nazarian S, Tchou J. Does preoperative MRI improve surgical outcomes in HER2+ breast cancer? [Abstract]. Ann Surg Oncol. 2020;27(Suppl 2):S375-S6.
- 148. Wang SY, Long JB, Killelea BK, Evans SB, Roberts KB, Silber A, et al. Preoperative breast magnetic resonance imaging and contralateral breast cancer occurrence among older women with ductal carcinoma in situ. Breast Cancer Res Treat. 2016;158(1):139-48.
- 149. Pilewskie M, Olcese C, Eaton A, Patil S, Morris E, Morrow M, et al. Perioperative breast MRI is not associated with lower locoregional recurrence rates in DCIS patients treated with or without radiation. Ann Surg Oncol. 2014;21(5):1552-60.
- 150. Kim JY, Cho N, Koo HR, Yi A, Kim WH, Lee SH, et al. Unilateral breast cancer: Screening of contralateral breast by using preoperative MR imaging reduces incidence of metachronous cancer. Radiology. 2013;267(1):57-66.
- 151. Amin AL, Helenowski IB, Kmiecik TE, Zaveri SR, Hansen NM, Bethke KP, et al. Effects of preoperative MRI on rate of ipsilateral and contralateral recurrence of breast cancer [Abstract]. Cancer Res. 2015;75(9 Suppl 1):Abstract P1-01-5.
- 152. Ko ES, Han BK, Kim RB, Ko EY, Shin JH, Nam SY, et al. Analysis of the effect of breast magnetic resonance imaging on the outcome in women undergoing breast conservation surgery with radiation therapy. J Surg Oncol. 2013;107(8):815-21.
- 153. Hill MV, Beeman JL, Jhala K, Holubar SD, Rosenkranz KM, Barth RJ, Jr. Relationship of breast MRI to recurrence rates in patients undergoing breast-conservation treatment. Breast Cancer Res Treat. 2017;163(3):615-22.
- 154. Bae MS, Moon HG, Han W, Noh DY, Ryu HS, Park IA, et al. Early stage triple-negative breast cancer: Imaging and clinical-pathologic factors associated with recurrence. Radiology. 2016;278(2):356-64.
- 155. van Nijnatten TJA, van Tiel LPT, Voogd AC, Groothuis-Oudshoorn CGM, Siesling S, Lobbes MBI. The effect of breast MRI on disease-free and overall survival in breast cancer

- patients: A retrospective population-based study. Breast Cancer Res Treat. 2020;184(3):951-63.
- 156. Wang SY, Long JB, Killelea BK, Evans SB, Roberts KB, Silber A, et al. Preoperative breast magnetic resonance imaging and contralateral breast cancer occurrence among older women with breast cancer. J Clin Oncol. 2016;34(4):321-8.
- 157. Hwang N, Schiller DE, Crystal P, Maki E, McCready DR. Magnetic resonance imaging in the planning of initial lumpectomy for invasive breast carcinoma: Its effect on ipsilateral breast tumor recurrence after breast-conservation therapy. Ann Surg Oncol. 2009;16(11):3000-9.
- 158. Gervais MK, Maki E, Schiller DE, Crystal P, McCready DR. Preoperative MRI of the breast and ipsilateral breast tumor recurrence: Long-term follow up. J Surg Oncol. 2017;115(3):231-7.
- 159. Ryu J, Park HS, Kim S, Kim JY, Park S, Kim SI. Preoperative magnetic resonance imaging and survival outcomes in T1-2 breast cancer patients who receive breast-conserving therapy. J Breast Cancer. 2016;19(4):423-8.

Appendix 1. Affiliations and Conflict of Interest Declarations

Table A1-1. Members of the Preoperative Breast MRI Working Group

Name and profession	Affiliation	Declarations of interest
Derek Muradali Radiologist	 Professor, University of Toronto Staff Radiologist, St Michael's Hospital, Toronto 	None
Andrea Eisen Medical Oncologist	 Ontario Breast Cancer Lead, Ontario Health (Cancer Care Ontario) Medical Oncologist and Head Familial Cancer Program, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto Associate Professor, Department of Medicine, University of Toronto 	None
Erin Cordeiro Surgeon	 General Surgeon, The Ottawa Hospital Attending Surgeon, Breast Surgical Oncology Unit, Division of General Surgery, The Ottawa Hospital Assistant Professor, Division of General Surgery, Department of Surgery, University of Ottawa 	None
Samantha Fienberg Radiologist	 Clinical Lead for the Ontario Breast Screening Program (OBSP), Cancer Screening, Ontario Health (Cancer Care Ontario) effective January 10, 2020 Assistant Clinical Professor Radiology, Faculty of Health Sciences, McMaster University, Hamilton Radiologist, Grand River Hospital, Kitchener Regional Breast Imaging Lead, Waterloo Wellington Regional Cancer Program 	None
Glenn Fletcher Health Research Methodologist	Health Research Methodologist, Program in Evidence-Based Care, Department of Oncology, McMaster University, Hamilton	None
Ralph George Surgeon	 Medical Director, CIBC Breast Centre, St. Michael's Hospital, Toronto Associate Professor, Department of Surgery, University of Toronto 	Co-Principle Investigator, PET ABC study looking at PET for staging LABC
Supriya Kulkarni Radiologist	 Assistant Professor, Medical Imaging, University of Toronto Department of Medical Imaging, Princess Margaret Hospital 	None

Jean Seely Radiologist	 Professor, Department of Radiology, University of Ottawa Head, Breast Imaging Section, Department of Medical Imaging, The Ottawa Hospital Regional Breast Imaging Lead, Ontario Breast Screening Program, Champlain LHIN, Cancer Care Ontario 	 Site principal investigator for the TMIST (Tomosynthesis Mammography Intervention Screening Trial) in Ottawa, funded by National Cancer Institute, to the Canadian Clinical Trials Group; voluntary role and employ staff research team to perform study. Consultant to the Canadian Breast Cancer Network in 2022; received honoraria of \$750. Visiting professor to Queen's university and received honorarium of 750\$.
Rola Shaheen Radiologist	 Regional Breast and Cancer Imaging Lead (RBCIL) for the Central East Regional Cancer Program & Regional Breast Imaging Lead (RBIL) for the Mississauga Halton and Central West Regions Chief of Radiology and Medical Director at Peterborough Regional Health Centre 	None

Table A1-2. Members of the Preoperative Breast MRI Patient Consultation Group

Name	Declaration of Conflicts of Interest
Joan Conrad	Board member (unpaid) for Peterborough Regional Health Centre
Randy Conrod	None
Lise Craig	None
Lauri Petz	None
Bob Tuck	None

Table A1-3. Members of the Preoperative Breast MRI Expert Panel

Name	Profession	Declarations of interest
Brian Pinchuk	Surgical Oncologist	None
Muriel Brackstone	Surgical Oncologist	None
Petrina Causer	Radiologist	None
Vivianne Freitas	Radiologist	None
Francisco Perera	Radiation Oncologist	None
Anne Koch	Radiation Oncologist	None
Sonal Gandhi	Medical Oncologist	>\$500 as consultant on Advisory Board for Novartis
Anita Bane	Pathologist	None

In accordance with the <u>PEBC Conflict of Interest (COI) Policy</u>, the Preoperative Breast MRI Guideline Development Group members and internal and external reviewers were asked to disclose potential conflicts of interest. Authors and internal reviewer declarations are recording in the preceding tables. Report Approval Panel members and targeted external reviewers indicated they had no conflicts. The COI declared above did not disqualify any individuals from performing their designated role in the development of this guideline, in accordance with the PEBC COI Policy. To obtain a copy of the policy, please contact the PEBC office by email at <u>ccopgi.mcmaster.ca</u>.